LiChiiiii
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 2023q1 Homework2 (quiz2) contributed by < `LiChiiiii`> >測驗題目:[quiz2](https://hackmd.io/@sysprog/linux2023-quiz2) ## 測驗一 ### 運作原理 考慮 `next_pow2` 可針對給定無號 64 位元數值 x,找出最接近且大於等於 2 的冪的值,例如: * `next_pow2(7)` = 8 * `next_pow2(13)` = 16 * `next_pow2(42)` = 64 最初想法是將 x 左移 1 後,最高位元的 1 保留下來,其餘設定為 0 ,根據測驗一的題目實作,利用 `shift` 和 `or` 將最高位元的 1 至最低位元的 bit 皆設定為 1 ,最後回傳 x+1 即為答案。 Example: ``` x = 0000011001000000 x = 0000011111111111 x+1 = 0000100000000000 ``` ```c uint64_t next_pow2(uint64_t x) { x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x |= x >> 32; return x+1; } ``` 發現:如果 x 剛好是 2 的冪,那麼應該要回傳 x 本身,但上述程式碼不會回傳 x 。 Example: ``` x = 0000010000000000 x = 0000011111111111 x+1 = 0000100000000000 ``` 因此可加上條件式判斷 x 是否剛好是 2 的冪,避免不必要的操作。 ```c if((x & (x - 1)) == 0) return x; ``` ### 用 `__builtin_clzl` 改寫 `__builtin_clzl(x)` 回傳 x 中有多少個 leading 0-bits ,當64 減去 `__builtin_clzl(x)` 即可找到最高位元的位置。 ```c uint64_t next_pow2(uint64_t x) { if (x == 0) return 1; else if ((x & (x - 1)) == 0) return x; else return ((uint64_t)1) << (64 - __builtin_clzl(x)); } ``` ### 在 Linux 核心原始程式碼找出類似的使用案例並解釋 在 [The Linux Kernel API](https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#c.is_power_of_2) 中找到 `__roundup_pow_of_two` 實作。其原始程式碼在 [linux/log2.h](https://github.com/torvalds/linux/blob/master/include/linux/log2.h) 。 #### `__roundup_pow_of_two` 給定一個無號整數 n,回傳該值最接近且大於等於 2 的冪的值,若 n 為 2 的冪則回傳 n。 ```c unsigned long __roundup_pow_of_two(unsigned long n) { return 1UL << fls_long(n - 1); } ``` :::info :stars: `fls_long` 用來找從最高位元開始連續的 0 的個數,也就是找到出現第一個 1 的位置。[linux/bitops.h](https://github.com/torvalds/linux/blob/master/include/linux/bitops.h) ```c static inline unsigned fls_long(unsigned long l) { if (sizeof(l) == 4) return fls(l); return fls64(l); } ``` 如果 `l` 是一個 32 位元的整數(即sizeof(l) == 4),則調用 `fls` 函數。 如果 `l` 是一個 64 位元的整數(即sizeof(l) > 4),則調用 `fls64` 函數。 ::: #### `__roundup_pow_of_two` 使用案例 在 [commit 8758768](https://github.com/torvalds/linux/commit/8758768ad8aa9fc0d56417315dec65b610fc3a21) 可以看到原本的 `i40iw_qp_round_up` 被替換成 `roundup_pow_of_two`。 > [color=#e85f71] `i40iw_qp_round_up` 實作概念與 `next_pow2` 相同,在 for loop 的每次循環中,將 scount 乘以2,然後將 wqdepth 右移 scount 位,並將結果與 wqdepth 進行位元或運算,這樣的效果是將最高位元的 1 至最低位元的 bit 皆設定為 1 ,其時間複雜度為 O(log wqdepth)。 > [color=lightgreen] `roundup_pow_of_two` 是將最高位元開始連續的 0 的個數作為 unsigned long 1 向左移的次數,其時間複雜度為 O(1)。 ```diff -/** - * i40iw_qp_roundup - return round up QP WQ depth - * @wqdepth: WQ depth in quantas to round up - */ - static int i40iw_qp_round_up(u32 wqdepth) - { - int scount = 1; - for (wqdepth--; scount <= 16; scount *= 2) - wqdepth |= wqdepth >> scount; - return ++wqdepth; - } ``` ```diff enum i40iw_status_code i40iw_get_sqdepth(u32 sq_size, u8 shift, u32 *sqdepth) { - *sqdepth = i40iw_qp_round_up((sq_size << shift) + I40IW_SQ_RSVD); + *sqdepth = roundup_pow_of_two((sq_size << shift) + I40IW_SQ_RSVD); ... } ``` ### 當上述 `clz` 內建函式已運用時,編譯器能否產生對應的 x86 指令? x86 中有一條稱為 `bsrq` 的指令,可以實現尋找最高位元 1 的位置的功能,其運作方式與 `clz` 函式類似。編譯器可以將 `clz` 函式轉換為 `bsrq` 指令來實現對應的功能。 實際執行 `cc -O2 -std=c99 -S next_pow2.c` ,可在 `next_pow2.s` 第 22 行看到 `bsrq` 指令。 :::spoiler next_pow2.s ```s= .file "next_pow2.c" .text .p2align 4 .globl next_pow2 .type next_pow2, @function next_pow2: .LFB0: .cfi_startproc endbr64 movl $1, %eax testq %rdi, %rdi je .L1 leaq -1(%rdi), %rdx movq %rdi, %rax testq %rdi, %rdx jne .L8 .L1: ret .p2align 4,,10 .p2align 3 .L8: bsrq %rdi, %rax movl $64, %ecx xorq $63, %rax subl %eax, %ecx movl $1, %eax salq %cl, %rax ret .cfi_endproc .LFE0: .size next_pow2, .-next_pow2 .ident "GCC: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0" .section .note.GNU-stack,"",@progbits .section .note.gnu.property,"a" .align 8 .long 1f - 0f .long 4f - 1f .long 5 0: .string "GNU" 1: .align 8 .long 0xc0000002 .long 3f - 2f 2: .long 0x3 3: .align 8 4: ``` ::: > :::info :stars: `BSR (Bit Scan Reverse)` 指令和 `bsrq` 指令差別在哪裡? >BSR (Bit Scan Reverse) 指令和 bsrq 指令都是在 x86 架構的指令集中的位元運算指令,它們的主要區別在於操作數的大小。 > >具體而言,BSR 指令是用於 16 位元或 32 位元操作數的位元運算,而 bsrq 指令是用於 64 位元操作數的位元運算。因此,它們分別可以從指定的操作數中尋找最高位元 (MSB) 的位置並將其傳回。 > > [name=chatGPT] ::: ## 測驗二 ### 運作原理 給定一整數 n ,回傳將 1 到 n 的二進位表示法依序串接在一起所得到的二進位字串,其所代表的十進位數字 mod $10^9+7$ 之值。 `len` :用來紀錄整數 `i` 之 bit 長度,也就是要左移的位元數。 迴圈會從 i = 1 開始執行至 i = n,也就是說, bit 長度會越來越長。當 `i` 為 2 的冪時,代表進位到下一個 bit , 因此執行 `len++` 增加 bit 長度,而每次循環會將前面迴圈的結果向左移 `len` 個位元數,利用 `or` 與 `i` 合併後,再做 `mod M` 的運算來避免 overflow 。 ```c int concatenatedBinary(int n) { const int M = 1e9 + 7; int len = 0; /* the bit length to be shifted */ /* use long here as it potentially could overflow for int */ long ans = 0; for (int i = 1; i <= n; i++) { if (!(i & (i-1))) len++; ans = (i | (ans << len)) % M; } return ans; } ``` ### 嘗試使用 `__builtin_{clz,ctz,ffs}` 改寫,並改進 $mod$ $10^9+7$ 的運算 **int __builtin_ffs (int x)** > Returns one plus the index of the least significant 1-bit of x, or if x is zero, returns zero. **int __builtin_ctz (unsigned int x)** > Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined. **int __builtin_clz (unsigned int x)** > Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined. * 想法: 使用函式計算最高位元開始算起的 0 之個數,及最低位元開始算啟的 0 之個數,若是 2 的冪,則兩者 0 之個數相加應為 31 (因為回傳型態為 int 是 32 bits) * 實作: 將 `__builtin_clz(i) + __builtin_ctz(i) = 31` 作為 2 的冪之條件式判斷。 ```c int concatenatedBinary(int n) { const int M = 1e9 + 7; int len = 0; long ans = 0; for (int i = 1; i <= n; i++) { if (__builtin_clz(i)+ __builtin_ctz(i) == 31) len++; ans = (i | (ans << len)) % M; } return ans; } ``` 以上程式碼改寫並沒有增進效能,於是又想了其他改寫方式。 * 想法: 程式碼中的條件式是為了確定左移的位元數,那是否可以直接計算需左移的位元數,以減少分支存在? * 實作: `__builtin_clz` 會回傳從最高位元開始連續的 0 之個數,將 32 bits 減去 `__builtin_clz(i)` 即為需左移的位元數。 ```c int concatenatedBinary(int n) { const int M = 1e9 + 7; long ans = 0; for (int i = 1; i <= n; i++){ ans = (i | (ans << (32 - __builtin_clz(i)))) % M; } return ans; } ``` ## 測驗三 ### 運作原理 UTF-8 字元可由 1, 2, 3, 4 個位元組構成。其中單一位元組的 UTF-8 由 ASCII 字元構成,其 MSB 必為 0。 UTF-8 的多位元組字元是由一個首位元組和 1, 2 或 3 個後續位元組所構成。首位元組可以表示其 UTF-8 字元是幾個位元組所組成,舉例來說,2 bytes 的字元其首位元組之最高位元開始存在連續 2 個 1,下表為多位元組字元的規則: | | UTF-8 | |:------- |:----------------------------- | | ASCII | 0xxx.xxxx | | 2 bytes | 110x.xxxx 10xx.xxxx | | 3 bytes | 1110.xxxx 10xx.xxxx 10xx.xxxx | 以下程式碼使用了 SWAR(SIMD Within A Register)算法,計算給定的 UTF-8 編碼的字串中字元數量。 程式碼中使用 for 迴圈來一次處理 8 bytes ,所以先透過 `len>>3` (也就是 `len/8`)來計算總共有幾個 8 bytes ,接著在迴圈中將 `not bit6 and bit7` 這個想法實作,並透過 [`__builtin_popcount`](https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html) 計算有多少 1,來紀錄有幾個 `continuation byte` (也就是 `10xx.xxxx`),最後將 `continuation byte` 的數量從總字串長度中減去,即可確定字元數量。 ```c= size_t swar_count_utf8(const char *buf, size_t len) { const uint64_t *qword = (const uint64_t *) buf; const uint64_t *end = qword + len >> 3; size_t count = 0; for (; qword != end; qword++) { const uint64_t t0 = *qword; const uint64_t t1 = ~t0; const uint64_t t2 = t1 & 0x04040404040404040llu; const uint64_t t3 = t2 + t2; const uint64_t t4 = t0 & t3; count += __builtin_popcountll(t4); } count = (1 << 3) * (len / 8) - count; count += (len & 7) ? count_utf8((const char *) end, len & 7) : 0; return count; } ``` > 第 16 行:利用 `(1 << 3) * (len / 8)` 得到總字串長度,再減去 `continuation byte` 的數量。 > 第 17 行:如果 `len & 7` 不等於 0,則說明 `len` 不是 8 的倍數,此時調用 `count_utf8` 函數計算在迴圈內未被處理到的 bytes ,回傳值再加入 `count` 中。 ### 比較 SWAR 和原本的實作效能落差 `swar_count_utf8` 中的循環次數比 `count_utf8` 少,因為對於一次處理 8 bytes 的長度範圍,使用位元運算進行計數,減少了循環的次數。而 `count_utf8` 則需要遍歷每個 byte 進行判斷,增加了循環的次數。 * 實驗設計:亂數產生長度為 1000000 的字串實作在 `swar_count_utf8` 和 `count_utf8` , 再利用 `perf` 重複執行 100 次並計算 `instructions` 和 `cycles` 的數量,從以下結果可以明顯看到 `count_utf8` 使用到較多的指令數量,花費較多的運行時間。 ```shell $sudo perf stat --repeat 100 -e instructions,cycles ./swar_count_utf8 Performance counter stats for './swar_count_utf8' (100 runs): 9058,4543 instructions # 1.47 insn per cycle ( +- 0.00% ) 6114,8381 cycles ( +- 0.29% ) 0.0167870 +- 0.0000631 seconds time elapsed ( +- 0.38% ) ``` ```shell $sudo perf stat --repeat 100 -e instructions,cycles ./count_utf8 Performance counter stats for './count_utf8' (100 runs): 9609,5870 instructions # 1.44 insn per cycle ( +- 0.00% ) 6602,1809 cycles ( +- 0.56% ) 0.0175909 +- 0.0000975 seconds time elapsed ( +- 0.55% ) ``` ### 在 Linux 核心原始程式碼找出 UTF-8 和 Unicode 相關字串處理的程式碼,探討其原理,並指出可能的改進空間 在 [/fs/unicode/utf8-norm.c](https://github.com/torvalds/linux/blob/master/fs/unicode/utf8-norm.c) 找到 UTF-8 和 Unicode 相關字串處理的程式碼。 `utf8byte()` 是一個 UTF-8 字串的解碼器,用於從 UTF-8 字符串中提取規範化形式的單個字節,並處理了 UTF-8 字符串的解碼和解析過程中可能出現的各種特殊情況。這段程式碼存在一些重複的部分,可以將重複部分抽取出來,另外建立函式來改進可讀性。 :::spoiler `utf8byte(struct utf8cursor *u8c)` ```c int utf8byte(struct utf8cursor *u8c) { utf8leaf_t *leaf; int ccc; for (;;) { /* Check for the end of a decomposed character. */ if (u8c->p && *u8c->s == '\0') { u8c->s = u8c->p; u8c->p = NULL; } /* Check for end-of-string. */ if (!u8c->p && (u8c->len == 0 || *u8c->s == '\0')) { /* There is no next byte. */ if (u8c->ccc == STOPPER) return 0; /* End-of-string during a scan counts as a stopper. */ ccc = STOPPER; goto ccc_mismatch; } else if ((*u8c->s & 0xC0) == 0x80) { /* This is a continuation of the current character. */ if (!u8c->p) u8c->len--; return (unsigned char)*u8c->s++; } /* Look up the data for the current character. */ if (u8c->p) { leaf = utf8lookup(u8c->um, u8c->n, u8c->hangul, u8c->s); } else { leaf = utf8nlookup(u8c->um, u8c->n, u8c->hangul, u8c->s, u8c->len); } /* No leaf found implies that the input is a binary blob. */ if (!leaf) return -1; ccc = LEAF_CCC(leaf); /* Characters that are too new have CCC 0. */ if (u8c->um->tables->utf8agetab[LEAF_GEN(leaf)] > u8c->um->ntab[u8c->n]->maxage) { ccc = STOPPER; } else if (ccc == DECOMPOSE) { u8c->len -= utf8clen(u8c->s); u8c->p = u8c->s + utf8clen(u8c->s); u8c->s = LEAF_STR(leaf); /* Empty decomposition implies CCC 0. */ if (*u8c->s == '\0') { if (u8c->ccc == STOPPER) continue; ccc = STOPPER; goto ccc_mismatch; } leaf = utf8lookup(u8c->um, u8c->n, u8c->hangul, u8c->s); if (!leaf) return -1; ccc = LEAF_CCC(leaf); } /* * If this is not a stopper, then see if it updates * the next canonical class to be emitted. */ if (ccc != STOPPER && u8c->ccc < ccc && ccc < u8c->nccc) u8c->nccc = ccc; /* * Return the current byte if this is the current * combining class. */ if (ccc == u8c->ccc) { if (!u8c->p) u8c->len--; return (unsigned char)*u8c->s++; } /* Current combining class mismatch. */ ccc_mismatch: if (u8c->nccc == STOPPER) { /* * Scan forward for the first canonical class * to be emitted. Save the position from * which to restart. */ u8c->ccc = MINCCC - 1; u8c->nccc = ccc; u8c->sp = u8c->p; u8c->ss = u8c->s; u8c->slen = u8c->len; if (!u8c->p) u8c->len -= utf8clen(u8c->s); u8c->s += utf8clen(u8c->s); } else if (ccc != STOPPER) { /* Not a stopper, and not the ccc we're emitting. */ if (!u8c->p) u8c->len -= utf8clen(u8c->s); u8c->s += utf8clen(u8c->s); } else if (u8c->nccc != MAXCCC + 1) { /* At a stopper, restart for next ccc. */ u8c->ccc = u8c->nccc; u8c->nccc = MAXCCC + 1; u8c->s = u8c->ss; u8c->p = u8c->sp; u8c->len = u8c->slen; } else { /* All done, proceed from here. */ u8c->ccc = STOPPER; u8c->nccc = STOPPER; u8c->sp = NULL; u8c->ss = NULL; u8c->slen = 0; } } } ``` ::: ## 測驗四 ### 運作原理 此程式碼是為了檢查**從最高位元開始是否只包含一段連續的 1**,使用一個 for 迴圈不斷的左移 x ,並檢查最高位元是否為 1 ,直到 x 等於零就結束迴圈回傳 true ,否則繼續左移 x ,若發現最高位元為 0 即回傳 false 。 ```c #include <stdint.h> #include <stdbool.h> bool is_pattern(uint16_t x) { if (!x) return 0; for (; x > 0; x <<= 1) { if (!(x & 0x8000)) return false; } return true; } ``` 改寫成精簡的程式碼,先計算 x 的 2 補數 ( ~x + 1 ) ,兩者做 XOR 來保證高位元的值為連續的 1 ,即可在最後比較大小來檢查是否特定樣式。 ```c bool is_pattern(uint16_t x) { const uint16_t n = ~x + 1; return (n ^ x) < x; } ``` Example: ```c x = 1111110000000000 ~x+1 = 0000010000000000 x^(~x+1) = 1111100000000000 < x // 符合特定樣式 ``` ```c x = 1101110000000000 ~x+1 = 0010010000000000 x^(~x+1) = 1111100000000000 > x // 不符合特定樣式 ``` ### 在 Linux 核心原始程式碼找出上述 bitmask 及產生器,探討應用範疇 參見 [Data Structures in the Linux Kernel](https://0xax.gitbooks.io/linux-insides/content/DataStructures/linux-datastructures-3.html) 找到 `BITMAP_FIRST_WORD_MASK` 和 `BITMAP_LAST_WORD_MASK` 實作,其原始程式碼在 [linux/bitmap.h](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/bitmap.h) 。 #### `BITMAP_FIRST_WORD_MASK` 此函式用來獲得**從最高位元開始包含連續 1 的 mask** ,參數 start 代表從最低位元開始算起含有 0 的個數,其餘為 1 。 將 `0xFFFFFFFF` 左移 `(start) & (BITS_PER_LONG - 1)` ,其中 `BITS_PER_LONG` 是一個常量,表示 unsigned long 型別的位數,通常是 32 位元或 64 位元,取決於機器的架構。 ```c #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) ``` Example: ```c BITMAP_FIRST_WORD_MASK(4) = 0xFFFFFFF0 /* 以下為計算過程 */ ~0UL << (4) & (32 - 1)) 0xFFFFFFFF << (4 & 31) 0xFFFFFFFF << 4 ``` #### `BITMAP_LAST_WORD_MASK` 此函式用來獲得**從最低位元開始包含連續 1 的 mask** ,參數 nbits 代表從最低位元開始算起含有 1 的個數,其餘為 0 。 ```c #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1))) ``` 假設 `BITS_PER_LONG` 為 32 ,那麼實作就是將 `0xFFFFFFFF` 右移 `32 - nbits` 。 Example: ```c BITMAP_LAST_WORD_MASK(4) = 0x0000000F /* 以下為計算過程 */ ~0UL >> (-(4) & (32 - 1)) 0xFFFFFFFF >> (-4 & 31) 0xFFFFFFFF >> 28 ``` #### 實際應用 這是一個用於清除 bitmap 指定範圍內的位元數的函數 > `map` : 指向 bitmap 的 pointer > `start` : bitmap 中需要被清除的第一個 bit 的位置 > `len` : 需要被清除的 bit 的數量 ```c void __bitmap_clear(unsigned long *map, unsigned int start, int len) { unsigned long *p = map + BIT_WORD(start); const unsigned int size = start + len; int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); while (len - bits_to_clear >= 0) { *p &= ~mask_to_clear; len -= bits_to_clear; bits_to_clear = BITS_PER_LONG; mask_to_clear = ~0UL; p++; } if (len) { mask_to_clear &= BITMAP_LAST_WORD_MASK(size); *p &= ~mask_to_clear; } } ```

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully