Juan Nunez-Iglesias
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee
  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # SciPy 2023 tutorial proposal: joint proposal with scikit-image and napari ## Title: image analysis and visualization in Python with scikit-image, napari, and friends ## Abstract (100 words) Between telescopes and satellite cameras and MRI machines and microscopes, scientists are producing more images than they can realistically look at. They need specialized viewers for multi-dimensional images, and automated tools to help process those images into knowledge. In this tutorial, we will cover the fundamentals of algorithmic image analysis, starting with how to think of images as NumPy arrays, moving on to basic image filtering, and finishing with a complete workflow: segmenting a 3D image into regions and making measurements on those regions. At every step, we will visualize and understand our work using matplotlib and napari. ## Description (500 words) Between telescopes and satellite cameras and MRI machines and microscopes, scientists are producing more images than they can realistically look at. They need specialized viewers for multi-dimensional images, and automated tools to help process those images into knowledge. This tutorial is aimed at folks who have some experience in scientific computing with Python, but are new to image analysis. To get the most out of it, they should have done some work with NumPy arrays — no need to be an expert! — but they don't need to know [an image from a pipe](https://en.wikipedia.org/wiki/The_Treachery_of_Images). We will cover the fundamentals of working with images in scientific Python. The tutorial will be split into four parts, of about 45 minutes each, plus breaks: - **Images are just NumPy arrays.** In this section we will cover the basics: how to think of images not as things we can see but numbers we can analyze. - **Changing the structure of images with image filtering.** In this section we will define *filtering*, a fundamental operation on signals (1D), images (2D), and higher-dimensional images (3D+). We will use filtering to find various structures in images, such as *blobs* and *edges*. Putting NumPy, SciPy, scikit-image, and scikit-learn together, we'll show how these fundamental filters are related to modern convolutional neural networks. - **Finding regions in images and measuring their properties.** In this section we will define image segmentation — splitting up images into regions. We will show how segmentation is commonly represented in the scientific Python ecosystem, some basic and advanced methods to do it, and use it to take measurements of segmented objects in our images. We will use scikit-image for some basics, and to make object measurements, but we'll also demonstrate how to use a modern, neural-network-based library to find our imaged objects quickly and get on with our science: measuring the things we've imaged. - **Q&A/Quick tour of advanced features.** This section will be more freestyle and will depend on the audience. We may do a guided tour of other advanced image analysis topics, answer lingering questions about the previous sections, or walk around the room and help people apply what they've learned to their own data of interest. Attendees will leave understanding how to work with images in Python, knowing some of the main libraries that can help them do that, and knowing where to get more help if they need it. ## Notes for the organiser ## Image ![](https://i.imgur.com/Az2JDJR.jpg) ## Speakers Juan Nunez-Iglesias Lars Grüter Kira Evans ## Outline - Introduction/Images are NumPy arrays (40 min) ([preliminary example notebook](https://github.com/jni/lma-2021-bioimage-analysis-python/blob/main/lectures/0_images_are_arrays.ipynb)) - break (15 min) - Image filtering (55 min) ([preliminary example notebook](https://github.com/jni/lma-2021-bioimage-analysis-python/blob/main/lectures/1_image_filters.ipynb)) - break (20 min) - Segmentation and region properties (50 min) ([preliminary example notebook](https://github.com/jni/lma-2021-bioimage-analysis-python/blob/main/lectures/2_segmentation_and_regionprops.ipynb)) - break (15 min) - Q&A/advanced topics (40 min) Total: 4h. Each notebook contains some prefilled code but also numerous exercises that will be done by attendees in class. ## Additional information This tutorial is based on a long history of well-received scikit-image tutorials at SciPy, EuroSciPy, and other venues (see for example [2018 pt 1](https://youtu.be/arXiv-TM7DY), [2018 pt 2](https://youtu.be/pZATswy_IsQ), [2019](https://youtu.be/d1CIV9irQAY)), and a shorter history of napari tutorials (e.g. [SciPy 2022](https://youtu.be/vismuuc4y1I)). This year, we hope to continue to improve the tutorial with the most relevant material for current audiences. For example, we will quickly cover a classical segmentation algorithm, before demonstrating how to "plug in" modern, deep-learning-based algorithms into our scientific measurement workflows. We will also use the napari n-dimensional viewer as our main viewer, allowing us to demonstrate image analysis for more complex images than before. ## Prerequisites Attendees should have *basic* knowledge of: - Python (imports, if clauses, list indexing, for loops, function definition and return statements) - Python environments — they should be able to make a new Python environment for the tutorial - Jupyter notebooks: they should know how to launch a Jupyter notebook, enter code in cells, and execute the code - NumPy arrays and simple array arithmetic ## Prior programming level of knowledge expected - Intermediate (see above)

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully