Janoš Vidali
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
--- tags: vaje, or, odlocanje, drevesa hackmd: https://hackmd.io/N_V5yCteQsiKBqP470SQDg plugins: mathjax, mermaid --- # Operacijske raziskave - vaje 22.3.2021 --- ## Odločitvena drevesa ### Naloga 1 Veliki koncert skupine FiM se bo odvijal v dvorani s $100$ neoznačenimi sedeži. Prireditelj se lahko odloči, da proda $100$, $101$, $102$ ali $103$ karte (povpraševanja je dovolj). Znane so verjetnosti ${p_0} = 0.2$, ${p_1} = 0.3$, ${p_2} = 0.4$ in ${p_3} = 0.1$, kjer je ${p_i}$ verjetnost, da $i$ kupcev kart ne pride na koncert (ne glede na število prodanih kart). Vsaka prodana karta prinese $10 €$ dobička, vsak obiskovalec, ki ne bo mogel v dvorano, pa pomeni $30 €$ stroškov (ker je že plačal $10 €$ za karto, ima torej organizator $20 €$ izgube). Koliko kart naj prireditelj proda, da bo pričakovani dobiček čim večji? ---- * $X$ ... dobiček * $k$ ... število prodanih kart - $E(X \mid k = 100) = 100 \cdot 10 € = 1000 €$ - $E(X \mid k = 101) = 101 \cdot 10 € - 0.2 \cdot 30 € = 1004 €$ - $E(X \mid k = 102) = 102 \cdot 10 € - 0.2 \cdot 60 € - 0.3 \cdot 30 € = 999 €$ - $E(X \mid k = 103) = 103 \cdot 10 € - 0.2 \cdot 90 € - 0.3 \cdot 60 € - 0.4 \cdot 30 € = 982 €$ Organizator naj proda 101 karto, pričakovani dobiček je tedaj 1004 €. --- ### Naloga 2 Imaš sledeče odločitveno drevo, a nisi prepričan glede vrednosti $p \in [0, 1/3]$. Poišči optimalne odločitve glede na vrednost $p$. Pričakovano vrednost želimo maksimizirati. ```mermaid graph LR A[A] -- p < 5/19 --- B[B] A -- p > 5/19 --- C([C: 22p - 5]) B -- p > 2/7 --- D([D: 10p - 2]) B == p < 2/7 === E([E: 3p]) C -- p --- F>10] C -- p --- G>2] C -- 1-2p --- H>-5] D -- 2p --- I>3] D -- 1-2p --- J>-2] E -- 3p --- K>1] E -- 1-3p --- L>0] ``` ---- * $E(D) = 2p \cdot 3 + (1-2p) \cdot (-2) = 10p - 2$ * $E(E) = 3p \cdot 1 + (1-3p) \cdot 0 = 3p$ * $E(C) = p \cdot 10 + p \cdot 2 + (1-2p) \cdot (-5) = 22p - 5$ * odločitev v B: - $10p - 2 > 3p$ - $p > 2/7$: se odločimo za D - $p < 2/7$: se odločimo za E * odločitev v A: - $p > 2/7$: + $10p - 2 > 22p - 5$ + $p < 1/4 < 2/7$: se ne more zgoditi + se odločimo za C - $p < 2/7$: + $3p > 22p - 5$ + $p < 5/19 < 2/7$: se odločimo za B + $5/19 < p < 2/7$: se odločimo za C Odločanje: * če je $p < 5/19$, se odločimo za B in potem za E * če je $p > 5/19$, se odločimo za C --- ### Naloga 3 Pacient ima na voljo operacijo. Brez operacije bo živel natanko $3$ mesece. Z uspešno opravljeno operacijo bo živel natanko $12$ mesecev. Operacija je neuspešna z verjetnostjo $0.3$ (v tem primeru pacient dočaka $0$ mesecev). Cilj pacienta je maksimiranje pričakovane življenjske dobe. 1. Ali naj pacient sprejme operacijo? 2. Pacient lahko opravi predhodni test, ki z zanesljivostjo $0.9$ napove uspešnost operacije, vendar z verjetnostjo $0.005$ pacient zaradi komplikacij med testom umre. Ali naj pacient opravi test? Nariši odločitveno drevo in odločitve sprejmi na podlagi izračunanih verjetnosti! ---- 1. * $X$ ... življenjska doba v mesecih * $E(X \mid \text{brez operacije}) = 3$ * $E(X \mid \text{z operacijo}) = 0.7 \cdot 12 + 0.3 \cdot 0 = 8.4$ * odloči se za operacijo 2. * $P(\text{operacija uspešna}) = 0.7$ * $P(\text{operacija neuspešna}) = 0.3$ * $P(\text{ugoden izid} \mid \text{operacija uspešna}) = 0.9$ * $P(\text{neugoden izid} \mid \text{operacija uspešna}) = 0.1$ * $P(\text{ugoden izid} \mid \text{operacija neuspešna}) = 0.1$ * $P(\text{neugoden izid} \mid \text{operacija neuspešna}) = 0.9$ * $P(\text{ugoden izid}) = 0.7 \cdot 0.9 + 0.3 \cdot 0.1 = 0.66$ * $P(\text{neugoden izid}) = 0.7 \cdot 0.1 + 0.3 \cdot 0.9 = 0.34$ * $P(\text{operacija uspešna} \mid \text{ugoden izid}) = 0.7 \cdot 0.9 / 0.66 = 21/22$ * $P(\text{operacija neuspešna} \mid \text{ugoden izid}) = 0.3 \cdot 0.1 / 0.66 = 1/22$ * $P(\text{operacija uspešna} \mid \text{neugoden izid}) = 0.7 \cdot 0.1 / 0.34 = 7/34$ * $P(\text{operacija neuspešna} \mid \text{neugoden izid}) = 0.3 \cdot 0.9 / 0.34 = 27/34$ ```mermaid graph LR A[test?] -- ne --- B[operacija?: 8.4] A == ja === C([komplikacije?: 8.54]) B -- ne --- D>3] B == ja === E([uspešna?: 8.4]) E -- uspešna: 0.7 --- F>12] E -- neuspešna: 0.3 --- G>0] C -- ja: 0.005 --- H>0] C -- ne: 0.995 --- I([izid?: 8.58]) I -- ugoden: 0.66 --- J[operacija?: 11.45] I -- neugoden: 0.34 --- K[operacija?: 3] J -- ne --- L>3] K == ne === M>3] J == ja === N([uspešna?: 11.45]) K -- ja --- O([uspešna?: 2.47]) N -- uspešna: 21/22 --- P>12] N -- neuspešna: 1/22 --- Q>0] O -- uspešna: 7/34 --- R>12] O -- neuspešna: 27/34 --- S>0] ``` Odločitve: odloči se za testiranje, če je izid ugoden, gre na operacijo, sicer pa ne. --- ### Naloga 4 Podjetje je razvilo produkt, za katerega je konkurenca pripravljena plačati $15 M€$. Če se odločijo samostojno prodajati produkt, jih vzpostavitev proizvodnje stane $6 M€$, za vsak uspešno prodan produkt pa dobijo $600 €$. Računajo, da bi z verjetnostjo $0.5$ investicija uspela in bi prodali $100000$ produktov, z verjetnostjo $0.5$ pa bi projekt propadel in bi prodali zgolj $10000$ produktov. Podjetje se lahko odloči tudi za neodvisno raziskavo trga. Ta stane $1 M€$, z verjetnostjo $2/3$ pa bo pravilno napovedala uspeh projekta (ne glede na to, ali bi ta uspel ali ne). Kako naj se podjetje odloči? ---- ```mermaid graph LR A[raziskava?] == ne === B[prodajo?: 27] A -- ja --- C([napoved?: 26]) B -- ja --- D>15] B == ne === E([uspe?: 27]) E -- ja: 1/2 --- F>54] E -- ne: 1/2 --- G>0] C -- ugodna: 1/2 --- H[prodajo?: 35] C -- neugodna: 1/2 --- I[prodajo?: 17] H -- ja --- J>14] H == ne === K([uspe?: 35]) K -- ja: 2/3 --- L>53] K -- ne: 1/3 --- M>-1] I -- ja --- N>14] I == ne === O([uspe?: 17]) O -- ja: 1/3 --- P>53] O -- ne: 2/3 --- Q>-1] ``` * $P(\text{uspe}) = P(\text{ne uspe}) = 0.5$ * $P(\text{ugodna} \mid \text{uspe}) = P(\text{neugodna} \mid \text{ne uspe}) = 2/3$ * $P(\text{neugodna} \mid \text{uspe}) = P(\text{ugodna} \mid \text{ne uspe}) = 1/3$ * $P(\text{ugodna}) = 0.5 \cdot 2/3 + 0.5 \cdot 1/3 = 1/2$ * $P(\text{neugodna}) = 0.5 \cdot 1/3 + 0.5 \cdot 2/3 = 1/2$ * $P(\text{uspe} \mid \text{ugodna}) = (0.5 \cdot 2/3) / 0.5 = 2/3$ * $P(\text{ne uspe} \mid \text{ugodna}) = (0.5 \cdot 1/3) / 0.5 = 1/3$ * $P(\text{uspe} \mid \text{neugodna}) = (0.5 \cdot 1/3) / 0.5 = 1/3$ * $P(\text{ne uspe} \mid \text{neugodna}) = (0.5 \cdot 2/3) / 0.5 = 2/3$ Odločitev: ne odločijo se za raziskavo, ne prodajo in gredo v lastno proizvodnjo. --- ### Naloga 5 Rexhep Bajrami bi se rad naslednja štiri leta ukvarjal s prodajo sadja in zelenjave (po štirih letih mu poteče delovna viza). Rad bi najel parcelo za stojnico, ki bo stala $6000 €$. Če je lokacija dobra, bo imel $12000 €$ dobička, če pa je lokacija slaba, bo imel le $3000 €$ dobička. Ocenjuje, da je z verjetnostjo $2/3$ lokacija dobra, z verjetnostjo $1/3$ pa slaba. 1. Z odločitvenim drevesom opiši njegove možnosti in ugotovi, kako naj se odloči ter kakšen dobiček naj pričakuje. 2. Za nasvet lahko vpraša znanca Seada, ki "ima nos" za tovrstne posle. Sead mu lahko da nasvet, a zanj zahteva $1200 €$. Dobro je znano, da ima Sead naslednje pogojne verjetnosti $P(\text{Seadovo mnenje} \mid \text{kakovost parcele})$: | | dobra | slaba | | ------------- | ----- | ----- | | **priporoča** | $2/3$ | $1/2$ | | **odsvetuje** | $1/3$ | $1/2$ | Ali naj vpraša Seada za nasvet? Kakšen je pričakovani dobiček? ---- ```mermaid graph LR F[vpraša?] == ne === A[najame?: 3000] A -- ne --- B>0] A == ja === C([lokacija?: 3000]) C -- dobra: 2/3 --- D>6000] C -- slaba: 1/3 --- E>-3000] F -- ja --- G([mnenje?: 1800]) G -- priporoča: 11/18 --- H[najame?: 2345.45] G -- odsvetuje: 7/18 --- I[najame?: 942.86] H -- ne --- J>-1200] H == ja === K([lokacija?: 2345.45]) K -- dobra: 8/11 --- L>4800] K -- slaba: 3/11 --- M>-4200] I -- ne --- N>-1200] I == ja === O([lokacija?: 942.86]) O -- dobra: 4/7 --- P>4800] O -- slaba: 3/7 --- Q>-4200] ``` * $P(\text{priporoča}) = 2/3 \cdot 2/3 + 1/3 \cdot 1/2 = 11/18$ * $P(\text{odsvetuje}) = 2/3 \cdot 1/3 + 1/3 \cdot 1/2 = 7/18$ * $P(\text{dobra} \mid \text{priporoča}) = {2/3 \cdot 2/3 \over 11/18} = 8/11$ * $P(\text{slaba} \mid \text{priporoča}) = {1/3 \cdot 1/2 \over 11/18} = 3/11$ * $P(\text{dobra} \mid \text{odsvetuje}) = {2/3 \cdot 1/3 \over 7/18} = 4/7$ * $P(\text{slaba} \mid \text{odsvetuje}) = {1/3 \cdot 1/2 \over 7/18} = 3/7$ Naj ne vpraša za mnenje in najame parcelo. --- ### Naloga 6 Mudi se ti na izpit, a ravno v trenutku, ko prideš na postajo Konzorcij, odpelje avtobus številka 1. Na prikazovalniku se izpiše, da bo naslednji avtobus številka 1 prispel čez $10$ minut, naslednji avtobus številka 6 čez $6$ minut, naslednji avtobus številka 14 pa čez $2$ minuti. Avtobusa 1 in 6 ob ugodnih semaforjih potrebujeta $6$ minut do postaje pri FE, pri čemer se lahko čas vožnje zaradi rdeče luči na semaforju pri FF podaljša za $1$ minuto. Verjetnosti, da bo rdečo luč imel avtobus 1, da bo rdečo luč imel avtobus 6, ter da bosta oba avtobusa imela zeleno luč, so enake $1/3$ (zaradi majhnega razmaka se ne more zgoditi, da bi oba avtobusa naletela na rdečo luč). Avtobus številka 1 nadaljuje pot do postaje pri FMF, za kar potrebuje še $2$ minuti. Avtobus številka 14 potrebuje $5$ minut do postaje pri študentskih domovih, od tam pa greš peš do postaje pri FE, za kar potrebuješ še $4$ minute. Pri tem prečkaš železnico -- če mimo pripelje vlak (kar se zgodi z verjetnostjo $0.05$), se čas hoje podaljša za $3$ minute. Ko prideš na postajo pri FE (ne glede na to, ali si prišel z avtobusom 6 ali 14), te čakajo še $4$ minute hoje do FMF, vendar moraš najprej prečkati Tržaško cesto. Če je na semaforju rdeča luč (kar se zgodi z verjetnostjo 0.9, neodvisno od drugih dogodkov), se lahko odločiš, da $2$ minuti počakaš na zeleno luč in potem nadaljuješ peš, ali pa da greš nazaj do postaje in počakaš na avtobus številka $1$ (ki bo, tako kot prej, vozil še $2$ minuti do FMF). Kakšne bodo tvoje odločitve, da bo pričakovano trajanje poti do FMF čim krajše? Nariši odločitveno drevo in odločitve sprejmi na podlagi izračunanih verjetnosti! ---- ![](https://jaanos.github.io/operacijske-raziskave/zapiski/2021/2021-03-22/avtobus.png) ---- ```mermaid graph LR A[avtobus?] -- 1 --- B([semafor FF?]) A -- 6 --- C A -- 14 --- D B -- zelen: 2/3 --- E>18] B -- rdeč: 1/3 --- F>19] ```

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully