Janoš Vidali
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- tags: vaje, or, odlocanje, drevesa hackmd: https://hackmd.io/N_V5yCteQsiKBqP470SQDg plugins: mathjax, mermaid --- # Operacijske raziskave - vaje 22.3.2021 --- ## Odločitvena drevesa ### Naloga 1 Veliki koncert skupine FiM se bo odvijal v dvorani s $100$ neoznačenimi sedeži. Prireditelj se lahko odloči, da proda $100$, $101$, $102$ ali $103$ karte (povpraševanja je dovolj). Znane so verjetnosti ${p_0} = 0.2$, ${p_1} = 0.3$, ${p_2} = 0.4$ in ${p_3} = 0.1$, kjer je ${p_i}$ verjetnost, da $i$ kupcev kart ne pride na koncert (ne glede na število prodanih kart). Vsaka prodana karta prinese $10 €$ dobička, vsak obiskovalec, ki ne bo mogel v dvorano, pa pomeni $30 €$ stroškov (ker je že plačal $10 €$ za karto, ima torej organizator $20 €$ izgube). Koliko kart naj prireditelj proda, da bo pričakovani dobiček čim večji? ---- * $X$ ... dobiček * $k$ ... število prodanih kart - $E(X \mid k = 100) = 100 \cdot 10 € = 1000 €$ - $E(X \mid k = 101) = 101 \cdot 10 € - 0.2 \cdot 30 € = 1004 €$ - $E(X \mid k = 102) = 102 \cdot 10 € - 0.2 \cdot 60 € - 0.3 \cdot 30 € = 999 €$ - $E(X \mid k = 103) = 103 \cdot 10 € - 0.2 \cdot 90 € - 0.3 \cdot 60 € - 0.4 \cdot 30 € = 982 €$ Organizator naj proda 101 karto, pričakovani dobiček je tedaj 1004 €. --- ### Naloga 2 Imaš sledeče odločitveno drevo, a nisi prepričan glede vrednosti $p \in [0, 1/3]$. Poišči optimalne odločitve glede na vrednost $p$. Pričakovano vrednost želimo maksimizirati. ```mermaid graph LR A[A] -- p < 5/19 --- B[B] A -- p > 5/19 --- C([C: 22p - 5]) B -- p > 2/7 --- D([D: 10p - 2]) B == p < 2/7 === E([E: 3p]) C -- p --- F>10] C -- p --- G>2] C -- 1-2p --- H>-5] D -- 2p --- I>3] D -- 1-2p --- J>-2] E -- 3p --- K>1] E -- 1-3p --- L>0] ``` ---- * $E(D) = 2p \cdot 3 + (1-2p) \cdot (-2) = 10p - 2$ * $E(E) = 3p \cdot 1 + (1-3p) \cdot 0 = 3p$ * $E(C) = p \cdot 10 + p \cdot 2 + (1-2p) \cdot (-5) = 22p - 5$ * odločitev v B: - $10p - 2 > 3p$ - $p > 2/7$: se odločimo za D - $p < 2/7$: se odločimo za E * odločitev v A: - $p > 2/7$: + $10p - 2 > 22p - 5$ + $p < 1/4 < 2/7$: se ne more zgoditi + se odločimo za C - $p < 2/7$: + $3p > 22p - 5$ + $p < 5/19 < 2/7$: se odločimo za B + $5/19 < p < 2/7$: se odločimo za C Odločanje: * če je $p < 5/19$, se odločimo za B in potem za E * če je $p > 5/19$, se odločimo za C --- ### Naloga 3 Pacient ima na voljo operacijo. Brez operacije bo živel natanko $3$ mesece. Z uspešno opravljeno operacijo bo živel natanko $12$ mesecev. Operacija je neuspešna z verjetnostjo $0.3$ (v tem primeru pacient dočaka $0$ mesecev). Cilj pacienta je maksimiranje pričakovane življenjske dobe. 1. Ali naj pacient sprejme operacijo? 2. Pacient lahko opravi predhodni test, ki z zanesljivostjo $0.9$ napove uspešnost operacije, vendar z verjetnostjo $0.005$ pacient zaradi komplikacij med testom umre. Ali naj pacient opravi test? Nariši odločitveno drevo in odločitve sprejmi na podlagi izračunanih verjetnosti! ---- 1. * $X$ ... življenjska doba v mesecih * $E(X \mid \text{brez operacije}) = 3$ * $E(X \mid \text{z operacijo}) = 0.7 \cdot 12 + 0.3 \cdot 0 = 8.4$ * odloči se za operacijo 2. * $P(\text{operacija uspešna}) = 0.7$ * $P(\text{operacija neuspešna}) = 0.3$ * $P(\text{ugoden izid} \mid \text{operacija uspešna}) = 0.9$ * $P(\text{neugoden izid} \mid \text{operacija uspešna}) = 0.1$ * $P(\text{ugoden izid} \mid \text{operacija neuspešna}) = 0.1$ * $P(\text{neugoden izid} \mid \text{operacija neuspešna}) = 0.9$ * $P(\text{ugoden izid}) = 0.7 \cdot 0.9 + 0.3 \cdot 0.1 = 0.66$ * $P(\text{neugoden izid}) = 0.7 \cdot 0.1 + 0.3 \cdot 0.9 = 0.34$ * $P(\text{operacija uspešna} \mid \text{ugoden izid}) = 0.7 \cdot 0.9 / 0.66 = 21/22$ * $P(\text{operacija neuspešna} \mid \text{ugoden izid}) = 0.3 \cdot 0.1 / 0.66 = 1/22$ * $P(\text{operacija uspešna} \mid \text{neugoden izid}) = 0.7 \cdot 0.1 / 0.34 = 7/34$ * $P(\text{operacija neuspešna} \mid \text{neugoden izid}) = 0.3 \cdot 0.9 / 0.34 = 27/34$ ```mermaid graph LR A[test?] -- ne --- B[operacija?: 8.4] A == ja === C([komplikacije?: 8.54]) B -- ne --- D>3] B == ja === E([uspešna?: 8.4]) E -- uspešna: 0.7 --- F>12] E -- neuspešna: 0.3 --- G>0] C -- ja: 0.005 --- H>0] C -- ne: 0.995 --- I([izid?: 8.58]) I -- ugoden: 0.66 --- J[operacija?: 11.45] I -- neugoden: 0.34 --- K[operacija?: 3] J -- ne --- L>3] K == ne === M>3] J == ja === N([uspešna?: 11.45]) K -- ja --- O([uspešna?: 2.47]) N -- uspešna: 21/22 --- P>12] N -- neuspešna: 1/22 --- Q>0] O -- uspešna: 7/34 --- R>12] O -- neuspešna: 27/34 --- S>0] ``` Odločitve: odloči se za testiranje, če je izid ugoden, gre na operacijo, sicer pa ne. --- ### Naloga 4 Podjetje je razvilo produkt, za katerega je konkurenca pripravljena plačati $15 M€$. Če se odločijo samostojno prodajati produkt, jih vzpostavitev proizvodnje stane $6 M€$, za vsak uspešno prodan produkt pa dobijo $600 €$. Računajo, da bi z verjetnostjo $0.5$ investicija uspela in bi prodali $100000$ produktov, z verjetnostjo $0.5$ pa bi projekt propadel in bi prodali zgolj $10000$ produktov. Podjetje se lahko odloči tudi za neodvisno raziskavo trga. Ta stane $1 M€$, z verjetnostjo $2/3$ pa bo pravilno napovedala uspeh projekta (ne glede na to, ali bi ta uspel ali ne). Kako naj se podjetje odloči? ---- ```mermaid graph LR A[raziskava?] == ne === B[prodajo?: 27] A -- ja --- C([napoved?: 26]) B -- ja --- D>15] B == ne === E([uspe?: 27]) E -- ja: 1/2 --- F>54] E -- ne: 1/2 --- G>0] C -- ugodna: 1/2 --- H[prodajo?: 35] C -- neugodna: 1/2 --- I[prodajo?: 17] H -- ja --- J>14] H == ne === K([uspe?: 35]) K -- ja: 2/3 --- L>53] K -- ne: 1/3 --- M>-1] I -- ja --- N>14] I == ne === O([uspe?: 17]) O -- ja: 1/3 --- P>53] O -- ne: 2/3 --- Q>-1] ``` * $P(\text{uspe}) = P(\text{ne uspe}) = 0.5$ * $P(\text{ugodna} \mid \text{uspe}) = P(\text{neugodna} \mid \text{ne uspe}) = 2/3$ * $P(\text{neugodna} \mid \text{uspe}) = P(\text{ugodna} \mid \text{ne uspe}) = 1/3$ * $P(\text{ugodna}) = 0.5 \cdot 2/3 + 0.5 \cdot 1/3 = 1/2$ * $P(\text{neugodna}) = 0.5 \cdot 1/3 + 0.5 \cdot 2/3 = 1/2$ * $P(\text{uspe} \mid \text{ugodna}) = (0.5 \cdot 2/3) / 0.5 = 2/3$ * $P(\text{ne uspe} \mid \text{ugodna}) = (0.5 \cdot 1/3) / 0.5 = 1/3$ * $P(\text{uspe} \mid \text{neugodna}) = (0.5 \cdot 1/3) / 0.5 = 1/3$ * $P(\text{ne uspe} \mid \text{neugodna}) = (0.5 \cdot 2/3) / 0.5 = 2/3$ Odločitev: ne odločijo se za raziskavo, ne prodajo in gredo v lastno proizvodnjo. --- ### Naloga 5 Rexhep Bajrami bi se rad naslednja štiri leta ukvarjal s prodajo sadja in zelenjave (po štirih letih mu poteče delovna viza). Rad bi najel parcelo za stojnico, ki bo stala $6000 €$. Če je lokacija dobra, bo imel $12000 €$ dobička, če pa je lokacija slaba, bo imel le $3000 €$ dobička. Ocenjuje, da je z verjetnostjo $2/3$ lokacija dobra, z verjetnostjo $1/3$ pa slaba. 1. Z odločitvenim drevesom opiši njegove možnosti in ugotovi, kako naj se odloči ter kakšen dobiček naj pričakuje. 2. Za nasvet lahko vpraša znanca Seada, ki "ima nos" za tovrstne posle. Sead mu lahko da nasvet, a zanj zahteva $1200 €$. Dobro je znano, da ima Sead naslednje pogojne verjetnosti $P(\text{Seadovo mnenje} \mid \text{kakovost parcele})$: | | dobra | slaba | | ------------- | ----- | ----- | | **priporoča** | $2/3$ | $1/2$ | | **odsvetuje** | $1/3$ | $1/2$ | Ali naj vpraša Seada za nasvet? Kakšen je pričakovani dobiček? ---- ```mermaid graph LR F[vpraša?] == ne === A[najame?: 3000] A -- ne --- B>0] A == ja === C([lokacija?: 3000]) C -- dobra: 2/3 --- D>6000] C -- slaba: 1/3 --- E>-3000] F -- ja --- G([mnenje?: 1800]) G -- priporoča: 11/18 --- H[najame?: 2345.45] G -- odsvetuje: 7/18 --- I[najame?: 942.86] H -- ne --- J>-1200] H == ja === K([lokacija?: 2345.45]) K -- dobra: 8/11 --- L>4800] K -- slaba: 3/11 --- M>-4200] I -- ne --- N>-1200] I == ja === O([lokacija?: 942.86]) O -- dobra: 4/7 --- P>4800] O -- slaba: 3/7 --- Q>-4200] ``` * $P(\text{priporoča}) = 2/3 \cdot 2/3 + 1/3 \cdot 1/2 = 11/18$ * $P(\text{odsvetuje}) = 2/3 \cdot 1/3 + 1/3 \cdot 1/2 = 7/18$ * $P(\text{dobra} \mid \text{priporoča}) = {2/3 \cdot 2/3 \over 11/18} = 8/11$ * $P(\text{slaba} \mid \text{priporoča}) = {1/3 \cdot 1/2 \over 11/18} = 3/11$ * $P(\text{dobra} \mid \text{odsvetuje}) = {2/3 \cdot 1/3 \over 7/18} = 4/7$ * $P(\text{slaba} \mid \text{odsvetuje}) = {1/3 \cdot 1/2 \over 7/18} = 3/7$ Naj ne vpraša za mnenje in najame parcelo. --- ### Naloga 6 Mudi se ti na izpit, a ravno v trenutku, ko prideš na postajo Konzorcij, odpelje avtobus številka 1. Na prikazovalniku se izpiše, da bo naslednji avtobus številka 1 prispel čez $10$ minut, naslednji avtobus številka 6 čez $6$ minut, naslednji avtobus številka 14 pa čez $2$ minuti. Avtobusa 1 in 6 ob ugodnih semaforjih potrebujeta $6$ minut do postaje pri FE, pri čemer se lahko čas vožnje zaradi rdeče luči na semaforju pri FF podaljša za $1$ minuto. Verjetnosti, da bo rdečo luč imel avtobus 1, da bo rdečo luč imel avtobus 6, ter da bosta oba avtobusa imela zeleno luč, so enake $1/3$ (zaradi majhnega razmaka se ne more zgoditi, da bi oba avtobusa naletela na rdečo luč). Avtobus številka 1 nadaljuje pot do postaje pri FMF, za kar potrebuje še $2$ minuti. Avtobus številka 14 potrebuje $5$ minut do postaje pri študentskih domovih, od tam pa greš peš do postaje pri FE, za kar potrebuješ še $4$ minute. Pri tem prečkaš železnico -- če mimo pripelje vlak (kar se zgodi z verjetnostjo $0.05$), se čas hoje podaljša za $3$ minute. Ko prideš na postajo pri FE (ne glede na to, ali si prišel z avtobusom 6 ali 14), te čakajo še $4$ minute hoje do FMF, vendar moraš najprej prečkati Tržaško cesto. Če je na semaforju rdeča luč (kar se zgodi z verjetnostjo 0.9, neodvisno od drugih dogodkov), se lahko odločiš, da $2$ minuti počakaš na zeleno luč in potem nadaljuješ peš, ali pa da greš nazaj do postaje in počakaš na avtobus številka $1$ (ki bo, tako kot prej, vozil še $2$ minuti do FMF). Kakšne bodo tvoje odločitve, da bo pričakovano trajanje poti do FMF čim krajše? Nariši odločitveno drevo in odločitve sprejmi na podlagi izračunanih verjetnosti! ---- ![](https://jaanos.github.io/operacijske-raziskave/zapiski/2021/2021-03-22/avtobus.png) ---- ```mermaid graph LR A[avtobus?] -- 1 --- B([semafor FF?]) A -- 6 --- C A -- 14 --- D B -- zelen: 2/3 --- E>18] B -- rdeč: 1/3 --- F>19] ```

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully