Pamphile ROY
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- title: 'Quasi-Monte Carlo Methods in Python' tags: - Python - SciPy - statistics - Quasi-Monte Carlo methods authors: - name: Pamphile T. Roy affiliation: 1 corresponding: true orcid: 0000-0001-9816-1416 - name: Art B. Owen affiliation: 2 orcid: 0000-0001-5860-3945 - name: Maximilian Balandat affiliation: 3 orcid: 0000-0002-8214-8935 - name: Matt Haberland affiliation: 4 orcid: 0000-0003-4806-3601 affiliations: - name: Quansight index: 1 - name: Stanford University index: 2 - name: Meta index: 3 - name: California Polytechnic State University, San Luis Obispo, USA index: 4 date: 30 August 2022 bibliography: paper.bib --- # Summary # Statement of need NumPy random number generators (`numpy.random`) have become the de-facto standard for sampling random numbers in the scientific Python ecosystem. These methods are fast and reliable, and the results are repeatable when a seed is provided. As a foundational tool, NumPy only provides classical Monte Carlo (MC) methods. Sampling in high dimensions with MC produces a lot of gaps and clusters of points. When these random numbers are used in algorithms (including sampling, numerical integration, optimization) to solve deterministic problems, the resulting MC methods have a slow convergence rate. In practice, this can mean that substantial computational resources are required to provide sufficient accuracy. In Quasi-Monte Carlo (QMC) methods [@owen2019], the random numbers of Monte Carlo methods are replaced with a deterministic sequence of numbers that possesses many of the characteristics of a random sequence (e.g. reduction of variance with the sample size), but without these gaps and clusters. QMC determinism is independent of implementation, language, and platform -- the sequence is mathematically defined. In many cases, a QMC sequence can be used as a drop-in replacement for a random number sequence, yet they are proven to provide faster convergence rates (both in theory and practice). When true stochasticity is required (e.g. statistical inference), QMC sequences can be "scrambled" using random numbers, and several smaller scrambled QMC sequences can often replace one large random sequence. QMC methods were added to SciPy [@virtanen2020scipy] after an extensive review and discussion period [@scipy2021qmc] that lead to a very fruitful collaboration between SciPy's maintainers and renowned researchers in the field. Our implementation work inspired additional work on highlighting the importance of including the first point in the Sobol' sequence [owen2020]. The following set of QMC features are currently available in SciPy: - Sobol' and Halton sequences (scrambled and unscrambled), - Poisson disk sampling, - Quasi-random multinomial and multivariate normal sampling, - Discrepancy measures ($C^2$, wrap around, star-$L_2$, mixed), - Latin Hypercube Sampling (centred, strength 1 or 2), - Optimize a sample by minimizing $C^2$ discrepancy or performing Lloyd-Max iterations, - Scaling utilities, - Fast numerical inverse methods to sample arbitrary distributions with QMC. Additional methods have been later added. They wrap the UNU.RAN library [unuran2022]. Before the release of SciPy 1.7.0, the need for these functions was partially met in the scientific Python ecosystem by tutorials (e.g. blog posts) and niche packages, but the functions in SciPy have several advantages: - Popularity: with an estimated 5 million download per month, SciPy is one of the most downloaded scientific Python packages. New features immediately reach a wide range of users from all fields. - Performance: The low level functions are written in compiled languages such as Cython and optimized for speed and efficiency. - Consistency: The APIs comply with the high standards of SciPy, function API reference and tutorials are thorough, and the interfaces share common features complementing other SciPy functions. - Quality: As with all SciPy code, these functions were rigorously peer-reviewed for code quality and are extensively unit-tested. In addition, the implementations were produced in collaboration with the foremost experts in the QMC field. Since the first release of all these new features, we have seen other libraries add support for and rely on SciPy's implementations, e.g. Optuna [@optuna2022qmc] and SALib [@salib2022qmc]. # Acknowledgements The authors thank professors Sergei Kucherenko (Imperial College London) and Fred Hickernell (Illinois Institute of Technology) for helpful discussions. The SciPy maintainer team provided support and help regarding the design and integration, notably Ralf Gommers (Quansight) and Tyler J. Reddy (Los Alamos National Laboratory). # References

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully