kaoyoung
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    3
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 113 交大 ## 數學 ### Question 1. 我們假設 \begin{align} \# n_m &= \text{ number of male nurse } \\ \# n_f &= \text{ number of female nurse } \\ \# d_m &= \text{ number of male doctor } \\ \# d_f &= \text{ number of female doctor } \\ \end{align} 由條件一(護士多於醫生)我們知 \begin{equation} \# nurse > \frac{16}{2} = 8 \Rightarrow \# nurse \geq 9 \text{ , } \# doctor \leq 7 \end{equation} 由條件二(男醫生多於男護士),條件三(男護士多於女護士),條件四(至少有一女醫生)知 \begin{equation} 6 \geq \# d_m > \# n_m > \# n_f \end{equation} 如果 $5 \geq \# d_m$ 則 \begin{equation} 5 \geq \# d_m > \# n_m > \# n_f \Rightarrow \# nurse = \# n_m + \# n_f \leq 4+3 = 7 (\Rightarrow\!\Leftarrow) \end{equation} 所以$\# d_m = 6 , \# d_f = 1 , \# nurse = 9$,又$\# n_m > \# n_f$所以$n_m=5 , n_f=4$ Case 1 : 假設他為女醫生 則移掉他後沒女醫生,矛盾。 Case 2 : 假設他為女護士 則移掉他後所有條件成立,OK! Case 3 : 假設他為男醫生 則移掉他後男醫生數量等於男護士數量,矛盾。 Case 4 : 假設他為男護士 則移掉他後男護士數量等於女護士數量,矛盾。 所以他為女護士。 ### Question 2. #### a. \begin{equation} f(n) = 1 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6} \end{equation} 所以 \begin{align} f(f(n)) & = f(\frac{n(n+1)(2n+1)}{6}) \\ & = \frac{t(t+1)(2t+1)}{6} , \hspace{3pt} t = \frac{n(n+1)(2n+1)}{6} \\ \end{align} 不太想再化簡 #### b. 因為$\sqrt{2009} = 7 \sqrt{41}$ 且a,b為非負整數所以 \begin{align} \{\text{ possible }(a,b)\} = \{(0,7 \sqrt{41}),(\sqrt{41},6 \sqrt{41}),(2\sqrt{41},5 \sqrt{41}),(3\sqrt{41},4 \sqrt{41}),(4\sqrt{41},3 \sqrt{41}),(5\sqrt{41},2 \sqrt{41}),(6\sqrt{41},1 \sqrt{41}),(7\sqrt{41}, 0)\} \end{align} ### Question 3. #### a. 我們先令 \begin{align} E(x) &= \text{ x 是否為偶數} = \text{ $2 \times \frac{x}{2}$ 是否小於 $x$ }\\ P(x) &= \text{ x 是否為質數} \\ \end{align} \begin{equation} \forall x \in \mathbb{N}\left[ E(x) \wedge x>2 \implies \exists p_1 ,p_2 (P(p_1) \wedge P(p_2) \wedge x=p_1 +p_2)\right] \end{equation} #### b. 假設 \begin{equation} a_n = \text{不含五連零長度為$n$的字串} \end{equation} 得到遞迴關係式 \begin{align} a_n &= a_{n-1} + a_{n-2} +a_{n-3} +a_{n-4} +a_{n-5} , \hspace{3pt} n \geq 6 \\ a_1 &= 2, \hspace{3pt} a_2 = 4, \hspace{3pt} a_3 = 8, \hspace{3pt} a_4 = 16, \hspace{3pt} a_5 = 31, \hspace{3pt} \end{align} 所以 \begin{align} a_6 &= 2 + 4 + 8 + 16 +31 = 61 \\ a_7 &= 4 + 8 + 16 +31 +61 = 120 \\ a_8 &= 8 + 16 +31 +61 +120 = 236 \\ a_9 &= 16 +31 +61 +120 + 236 = 464 \\ a_{10} &= 31 +61 +120 + 236 +464 = 912 \\ \end{align} 所以含至少五連零長度為$10$的字串為 \begin{equation} 2^{10} - 912 = 1024-912 = 112 \end{equation} 由相同步驟,含至少五連一長度為$10$的字串為 \begin{equation} 2^{10} - 912 = 1024-912 = 112 \end{equation} 所以含至少五連一或五連零長度為$10$的字串為 \begin{equation} 112 + 112 -2 = 222 \end{equation} ### Question 4. #### Question a. ![螢幕擷取畫面 2024-06-26 150042](https://hackmd.io/_uploads/r1a3h4KUA.png) 共有210種走法 #### Question b. ![螢幕擷取畫面 2024-06-26 150353](https://hackmd.io/_uploads/H1BuaNYL0.png) 有110種 #### Question c. 考慮$p_1 , p_2 ,p_3$,$p_1$向右走一步到$p_2$,$p_2$向右走一步到$p_3$則 \begin{equation} (p_1,p_2),(p_2,p_3) \in R \text{但是} (p_1,p_3) \notin R \end{equation} 不符合遞移性,所以不為partially ordered set。 ### Question 5. #### a \begin{align} \end{align} 共6個 #### b ### Question 6. 假設每點的degree皆大於5,則 \begin{equation} e \geq \frac{6v}{2} = 3v \end{equation} 但已知 \begin{equation} 3v - 6 \geq e \Rightarrow 3v - 6 \geq e \geq \frac{6v}{2} = 3v (\Rightarrow\!\Leftarrow) \end{equation} 所以至少存在一點度數不大於5 ### Question 7. 計算量太大我直接丟線上計算機 #### a \begin{equation} \begin{pmatrix} \frac{-1}{3} &2 &1 &-1 \\ \frac{1}{3} &\frac{-4}{3} &\frac{-4}{3} &1 \\ \frac{5}{12} &\frac{-13}{12} &\frac{-11}{6} &1 \\ \frac{1}{12} &\frac{-1}{12} &\frac{1}{6} &0 \\ \end{pmatrix} \end{equation} #### b \begin{align} PA &= LU \\ \begin{pmatrix} 0 &1 &0 &0 \\ 1 &0 &0 &0 \\ 0 &0 &0 &1 \\ 0 &0 &1 &0 \\ \end{pmatrix}\begin{pmatrix} 0 &-3 &3 &9 \\ 2 &3 &-1 &1 \\ 1 &3 &-2 &2 \\ 4 &10 &-5 &1 \\ \end{pmatrix} &= \begin{pmatrix} 1 &0 &0 &0 \\ 0 &1 &0 &0 \\ 2 &-\frac{4}{3} &1 &0 \\ \frac{1}{2} &-\frac{1}{2} &0 &1 \\ \end{pmatrix}\begin{pmatrix} 2 &3 &-1 &1 \\ 0 &-3 &3 &9 \\ 0 &0 &1 &11 \\ 0 &0 &0 &6 \\ \end{pmatrix} \end{align} ### Question 8. 我們先令 \begin{equation} A = \begin{pmatrix} 1 &0 &0 \\ 1 &1 &1 \\ 1 &2 &4 \\ 1 &3 &9 \\ \end{pmatrix}, X=\begin{pmatrix} C \\ D \\ E \\ \end{pmatrix}, B= \begin{pmatrix} 20 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix} \end{equation} 我們想找 \begin{equation} || AX-B|| \text{ 的最小值} \Rightarrow A^T AX = A^TB \end{equation} 開解 \begin{align} A^T AX &= A^TB \\ \begin{pmatrix} 1 &1 &1 &1 \\ 0 &1 &2 &3 \\ 0 &1 &4 &9 \\ \end{pmatrix}\begin{pmatrix} 1 &0 &0 \\ 1 &1 &1 \\ 1 &2 &4 \\ 1 &3 &9 \\ \end{pmatrix} \begin{pmatrix} C \\ D \\ E \\ \end{pmatrix} &= \begin{pmatrix} 1 &1 &1 &1 \\ 0 &1 &2 &3 \\ 0 &1 &4 &9 \\ \end{pmatrix}\begin{pmatrix} 20 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} 4 &6 &14 \\ 6 &14 &36 \\ 14 &36 &98 \\ \end{pmatrix}\begin{pmatrix} C \\ D \\ E \\ \end{pmatrix} &= \begin{pmatrix} 20 \\ 0 \\ 0 \\ \end{pmatrix} \\ \begin{pmatrix} C \\ D \\ E \\ \end{pmatrix} &= \begin{pmatrix} 19 \\ -21 \\ 5 \\ \end{pmatrix} \end{align} ### Question 9. \begin{align} I &= I^T = (A A^{-1})^T = (A^{-1})^T A^T \\ I &= I^T = (A^{-1} A)^T = A^T (A^{-1})^T \\ \end{align} 所以 \begin{equation} (A^{-1})^T = (A^T)^{-1} \end{equation} ### Question 10. #### a 考慮 \begin{equation} \det(A-\lambda I) = \begin{pmatrix} 1-\lambda &1 &1 \\ 0 &2-\lambda &1 \\ 0 &0 &3-\lambda \\ \end{pmatrix} = (1-\lambda)(2-\lambda)(3-\lambda)=0 \end{equation} 所以 \begin{equation} \lambda = 1,2,3 \Rightarrow \text{ eigenvalues of $A$ are } 1,2,3 \end{equation} #### b Case 1 : eigenvalue $\lambda_1 = 1$ 令其對應的eignevector為$v_1$ \begin{equation} A v_1 = 1 v_1 \Rightarrow \begin{pmatrix} 1 &1 &1 \\ 0 &2 &1 \\ 0 &0 &3 \\ \end{pmatrix}v_1 = v_1 \Rightarrow v_1 = k_1\begin{pmatrix} 1 &0 &0 \\ \end{pmatrix}^T, \hspace{3pt} k_1 \neq 0, k_1 \in \mathbb{R} \end{equation} Case 2 : eigenvalue $\lambda_2 = 2$ 令其對應的eignevector為$v_2$ \begin{equation} A v_2 = 2 v_2 \Rightarrow \begin{pmatrix} 1 &1 &1 \\ 0 &2 &1 \\ 0 &0 &3 \\ \end{pmatrix}v_2 = 2v_2 \Rightarrow v_2 = k_2\begin{pmatrix} 1 &1 &0 \\ \end{pmatrix}^T, \hspace{3pt} k_2 \neq 0, k_2 \in \mathbb{R} \end{equation} Case 3 : eigenvalue $\lambda_3 = 3$ 令其對應的eignevector為$v_3$ \begin{equation} A v_3 = 3 v_3 \Rightarrow \begin{pmatrix} 1 &1 &1 \\ 0 &2 &1 \\ 0 &0 &3 \\ \end{pmatrix}v_3 = 3v_3 \Rightarrow v_3 = k_3 \begin{pmatrix} 1 &1 &1 \\ \end{pmatrix}^T, \hspace{3pt} k_3 \neq 0, k_3 \in \mathbb{R} \end{equation} #### c 考慮$A$的eigenvector $v_i$ \begin{equation} B \begin{pmatrix} v_i \\ v_i \\ \end{pmatrix} = \begin{pmatrix} 2A &2A \\ A &3A \\ \end{pmatrix}\begin{pmatrix} v_i \\ v_i \\ \end{pmatrix} = \begin{pmatrix} 4Av_i \\ 4Av_i \\ \end{pmatrix} = \begin{pmatrix} 4 \lambda_i v_i \\ 4 \lambda_i v_i \\ \end{pmatrix} = 4 \lambda_i\begin{pmatrix} v_i \\ v_i \\ \end{pmatrix} \end{equation} 所以$B$的特徵根至少有$4,8,12$。考慮其他向量$(v^{\prime}_1,v^{\prime}_2)^T$ \begin{equation} B \begin{pmatrix} v^{\prime}_1 \\ v^{\prime}_2 \\ \end{pmatrix} = \begin{pmatrix} 2A &2A \\ A &3A \\ \end{pmatrix}\begin{pmatrix} v^{\prime}_1 \\ v^{\prime}_2 \\ \end{pmatrix} = \begin{pmatrix} 2Av^{\prime}_1 + 2Av^{\prime}_2 \\ Av^{\prime}_1 + 3Av^{\prime}_2 \\ \end{pmatrix} \end{equation} ### Question 11. 直接上網搜cholesky decomposition calculator。 矩陣 A 不是正定矩陣,所以不可能進行cholesky decomposition 。calculator ### Question 12. 先確定$D$是否為正半定 \begin{equation} \det(D - \lambda I) = \det(\begin{pmatrix} 4- \lambda &0 &0 \\ 0 &1- \lambda &i \\ 0 &-i &1- \lambda \\ \end{pmatrix}) = -\lambda(2-\lambda)(4-\lambda) \Rightarrow \lambda = 0,2,4 \end{equation} 因為所有特徵根都非負,所以$D$為正半定。 特徵根 0 對應的特徵空間為$\ker(D)$ \begin{equation} \ker(D) = \ker( \begin{pmatrix} 4 &0 &0 \\ 0 &1 &i \\ 0 &-i &1\\ \end{pmatrix} ) = span\{(0\hspace{10pt} 1\hspace{10pt}i)^T\} \end{equation} 特徵根 2 對應的特徵空間為$\ker(D-2I)$ \begin{equation} \ker(D-2I) =\ker( \begin{pmatrix} 4 &0 &0 \\ 0 &-1 &i \\ 0 &-i &-1\\ \end{pmatrix} ) = span\{(0\hspace{10pt} i\hspace{10pt}1)^T\} \end{equation} 特徵根 4 對應的特徵空間為$\ker(D-4I)$ \begin{equation} \ker(D-4I) = \ker( \begin{pmatrix} 0 &0 &0 \\ 0 &-3 &i \\ 0 &-i &-3\\ \end{pmatrix} ) = span\{(1\hspace{10pt} 0\hspace{10pt}0)^T\} \end{equation} 對$v_1 = (0\hspace{10pt} 1\hspace{10pt}i)^T、v_2 =(0\hspace{10pt} i\hspace{10pt}1)^T、v_3 = (1\hspace{10pt} 0\hspace{10pt}0)^T$分別對$v_i$單範正交化變成$v^{\prime}_i$ \begin{align} v^{\prime}_1 &= (0\hspace{10pt} \frac{1}{\sqrt{2}}\hspace{10pt}\frac{i}{\sqrt{2}})^T \\ v^{\prime}_2 &= (0\hspace{10pt} \frac{i}{\sqrt{2}}\hspace{10pt}\frac{1}{\sqrt{2}})^T \\ v^{\prime}_3 &= (1\hspace{10pt} 0\hspace{10pt}0)^T \end{align} 令 \begin{equation} P = \begin{pmatrix} v^{\prime}_1 &v^{\prime}_2 &v^{\prime}_3 \end{pmatrix} = \begin{pmatrix} 0 &0 &1 \\ \frac{1}{\sqrt{2}} &\frac{i}{\sqrt{2}} &0 \\ \frac{i}{\sqrt{2}} &\frac{1}{\sqrt{2}} &0 \\ \end{pmatrix} \end{equation} 因為$P^H D P = \begin{pmatrix} 0 &0 &0 \\ 0 &2 &0 \\ 0 &0 &4 \\ \end{pmatrix} = C$所以 \begin{align} D = PCP^H &= \begin{pmatrix} 0 &0 &1 \\ \frac{1}{\sqrt{2}} &\frac{i}{\sqrt{2}} &0 \\ \frac{i}{\sqrt{2}} &\frac{1}{\sqrt{2}} &0 \\ \end{pmatrix}\begin{pmatrix} 0 &0 &0 \\ 0 &\sqrt{2} &0 \\ 0 &0 &\sqrt{4} \\ \end{pmatrix}\begin{pmatrix} 0 &0 &0 \\ 0 &\sqrt{2} &0 \\ 0 &0 &\sqrt{4} \\ \end{pmatrix}(\begin{pmatrix} 0 &0 &1 \\ \frac{1}{\sqrt{2}} &\frac{i}{\sqrt{2}} &0 \\ \frac{i}{\sqrt{2}} &\frac{1}{\sqrt{2}} &0 \\ \end{pmatrix})^H \\ &= \begin{pmatrix} 0 &0 &1 \\ \frac{1}{\sqrt{2}} &\frac{i}{\sqrt{2}} &0 \\ \frac{i}{\sqrt{2}} &\frac{1}{\sqrt{2}} &0 \\ \end{pmatrix}\begin{pmatrix} 0 &0 &0 \\ 0 &\sqrt{2} &0 \\ 0 &0 &2 \\ \end{pmatrix} (\begin{pmatrix} 0 &0 &1 \\ \frac{1}{\sqrt{2}} &\frac{i}{\sqrt{2}} &0 \\ \frac{i}{\sqrt{2}} &\frac{1}{\sqrt{2}} &0 \\ \end{pmatrix}\begin{pmatrix} 0 &0 &0 \\ 0 &\sqrt{2} &0 \\ 0 &0 &2 \\ \end{pmatrix}) ^H \\ &= F^H F \end{align} 所以 \begin{align} F = (\begin{pmatrix} 0 &0 &1 \\ \frac{1}{\sqrt{2}} &\frac{i}{\sqrt{2}} &0 \\ \frac{i}{\sqrt{2}} &\frac{1}{\sqrt{2}} &0 \\ \end{pmatrix}\begin{pmatrix} 0 &0 &0 \\ 0 &\sqrt{2} &0 \\ 0 &0 &2 \\ \end{pmatrix})^H &= \begin{pmatrix} 0 &0 &0 \\ 0 &\sqrt{2} &0 \\ 0 &0 &2 \\ \end{pmatrix}\begin{pmatrix} 0 &\frac{1}{\sqrt{2}} &\frac{-i}{\sqrt{2}} \\ 0 &\frac{-i}{\sqrt{2}} &\frac{1}{\sqrt{2}} \\ 1 &0 &0 \\ \end{pmatrix} \\ &=\begin{pmatrix} 0 &0 &0 \\ 0 &-i &1 \\ 2 &0 &0 \\ \end{pmatrix} \end{align} ## 資演 ![螢幕擷取畫面 2024-07-31 111121](https://hackmd.io/_uploads/r1FtjXPFR.png) ### PART I #### Question 1 用queue為FIFO的觀念加上注意queue為空的情況即可解。 #### Question 2 它為quick sort ##### Problem 4 ##### Problem 5 ![螢幕擷取畫面 2024-07-02 160012](https://hackmd.io/_uploads/rJe3mNZPC.png) ##### Problem 6 最糟為遞增或遞減 #### Question 3 Double hashing 方式 : 元素x在第i個collision > 位置 $= (h_1 (x) + i h_2 (x)) \mod \text{ table size}$ ##### Problem 7 插入80 : \begin{equation} h_1 (80) = 2 \end{equation} 所以插入的index為2 插入69 : \begin{equation} h_1 (69) = 4 \end{equation} 所以插入的index為4 插入99 : \begin{equation} h_1 (99) = 8 \end{equation} 所以插入的index為8 插入16 : \begin{equation} h_1 (16) = 3 \end{equation} 所以插入的index為3 插入73 : \begin{align} h_1 (73) &= 8 \hspace{5pt} \text{ collision } \\ h_1 (73) + h_2 (73) &= (8 + 8) \mod 13 = 3 \hspace{5pt} \text{ 1st collision } \\ h_1 (73) + 2h_2 (73) &= (8 + 16) \mod 13 = 11 \hspace{5pt} \text{ 1st collision } \end{align} 所以插入的index為11 插入30 : \begin{align} h_1 (30) &= 4 \hspace{5pt} \text{ collision } \\ h_1 (30) + h_2 (30) &= (4 + 9) \mod 13 = 0 \hspace{5pt} \text{ 1st collision } \\ \end{align} 所以插入的index為0 插入41 : \begin{align} h_1 (41) &= 2 \hspace{5pt} \text{ collision } \\ h_1 (41) + h_2 (41) &= (2 + 9) \mod 13 = 11 \hspace{5pt} \text{ 1st collision } \\ h_1 (41) + 2h_2 (41) &= (2 + 18) \mod 13 = 7 \hspace{5pt} \text{ 1st collision } \\ \end{align} 所以插入的index為7 ##### Problem 8 看Problem 7中相撞的情況,選兩者皆有相撞的。 ##### Problem 9 | index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | ----- | - | - | - | - | - | - | - | - | - | - | -- | -- | -- | | key | 30 | - | 80 | 16 | 69 | - | - | 41 | 99 | - | -- | 73 | -- | #### Question 4 ##### Problem 10 >step 1 : take AD >step 2 : take CE >step 3 : take DF >step 4 : take AB >step 5 : take BE >step 6 : take EG ##### Question 11 Total weight = $5+5+6+7+7+9 = 39$ ##### Question 12 #### Question 5 ##### Problem 13 ##### Question 14 #### Question 6 函數sum為給定數值的各位數加總 ##### Problem 15 trace the code >第一個迴圈 : sum(12321) = 9 > 7 >n = 1233 ; y = 10 ; >第二個迴圈 : sum(1233) = 9 > 7 >n = 124 ; y = 100 ; >第三個迴圈 : sum(124) = 7 > 7 停下 所以$n = 124 ; y = 100 ; n*y-x = 12400-12321 = 79$ ##### Question 16 因為 $x + (n*y-x) = n*y$ 其中 $sum(ny) \leq \text{target}$ 所以c,d為可能答案,再藉由觀察$n*y$的造法是由個位數開始,所以選c #### Question 7 ##### Problem 17 時間複雜度 >對每個 $b_j$ 只需做 $k$ 次四則運算,所以時間複雜度為 $\theta(k)$。 對每個 $b$ 有 $p$ 個 $b_j$,所以時間複雜度為 $O(kp)$。 證明$a$ 對應到 $b$ 是 1-1。 > ##### Question 18 因為 ### PART II #### Question 1 ##### Problem A > trv1 is preorder ; ##### Problem B ##### Problem C answer : none ##### Problem D ##### Problem E #### Question 2 ##### Problem A answer : (1) $\infty$ ; (2) $0$ ; (3) $<$ ; (4) $<$ ; ##### Problem B answer : -4 ##### Problem C answer : 1 ##### Problem D answer : 2 #### Question 3 # 113 台科 ## 資訊工程概論 Part I | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | | -- | -- | -- | -- | -- | -- | -- | | d | c,d | a,d,e | c,d | e | c,e | a,c | Part II | A | B | C | D | E | F | G | | -- | -- | -- | -- | -- | -- | -- | | 2044 | 12 | C | 83 | 15 | 2 | 4 | | H | I | J | K | L | M | | -- | -- | -- | -- | -- | -- | | 248 | -1 | -1 | 13 | 11 | 16 | ### Paet I(multiple choice) #### Question 1. answer : d Order of growth rate >$2^N > N^2 > N^{1.5} > N \log^2 N > N \log(N^2) = N \log(N) > N \log\log N > N > \sqrt{N} > 2048$ #### Question 2. answer : c,d >(a) true (b) true 把邊從小到大取,所以無影響 \(c) false 隨意選定一個節點當起點,如果圖不連通無法到其他地方 (d) false (e) true (f) true (g) true #### Question 3. answer : a,d,e >(a) true (b) false 不可有負數權重 \(c) false 不可有負數權重 (d) true (e) true 由執行了n次(點數為n)循環但卻能持續更新頂點的權重 (f) false Dijkstra’s Algorithm不可有負數權重 #### Question 4. answer : c,d >(a) false >反例 : 只有一個點 (b) false 給定 $BFS = 1,2,3\text{ ; }DFS = 1,2,3$可能的圖並不唯一 ![螢幕擷取畫面 2024-06-27 130142](https://hackmd.io/_uploads/SyMPzd5U0.png) \(c) true (d) true #### Question 5. answer : e >stable sorting : tree sort, bubble sort, insertion sort, merge sort, selection sort >unstable sorting : heap sort #### Question 6. answer : c,e >(a) true >$430 < 600$ , OK >(b) >$10 < 14$ , OK >\(c) >$450 > 100$ , NG >(d) >$300 < 580$ , OK >(e) >$100 > 96$ , NG #### Question 7. answer : a,c >假設為LIFO >(a) false >由$2,3,5$知$4$在$1$上,所以$4$要在$1$之前。 (b) true 步驟如下 ```c++= push(1) push(2) push(3) pop() pop() push(4) push(5) pop() push(6) pop() pop() ``` >\(c) false 由$1,5$先出知$3$在$2$之上,所以$3$要在$2$之前。 ### Paet II(Fill in the blank) #### Question 1. answer : (A) = 2044 ; (B) = 12 >假設 >\begin{align} n &= \text{ number of row} \\ m &= \text{ number of column} \\ \end{align} 情況一 : row major \begin{align} X(2,3) + 2 \times 2m-2 &= X(4,2) \\ 1986 + 2 \times 2m-2 &= 1978 \\ 4m-2 &= -8 \\ m &= -2 (\Rightarrow\!\Leftarrow) \end{align} 情況二 : column major \begin{align} X(4,2) + n-2 \times 2 &= X(2,3) \\ 1978 + n-2 \times 2 &= 1986 \\ n &= 12 \end{align} 最後算$X(3,8)$ \begin{align} X(3,8) &= X(2,3) + 5n-2 \\ &=1986 + 58\\ &=2044\\ \end{align} #### Question 2. answer : C >preorder traversal : A,B,D,G,C,E,F,H,I #### Question 3. answer : 83 >假設有n個nodes >\begin{equation} \frac{n(n-1)}{2} = 3403 \Rightarrow n = 83 \end{equation} #### Question 4. answer : 15;2 #### Question 5. answer : 4 | | P1 | P3 | P2 | P4 | |:---:|:---:|:---:|:----:|:-----:| |time| 0-7 | 7-8 | 8-12 | 12-16 | Waiting time \begin{align} P1 &= 0 \\ P2 &= 8-2 = 6 \\ P3 &= 7-4 = 3 \\ P4 &= 12-5 = 7 \\ \text{ Average waiting time }&= \frac{16}{4} = 4\text{ ms } \end{align} #### Question 6. answer : 248 >步驟 >\begin{equation} 100 \to 90 \to 58 \to 55 \to 39 \to 38 \to 18 \to 150 \to 160 \to 184 \end{equation} 所以 \begin{equation} \text{ total distance } = (100-18) + (184-18) = 284-36=248 \end{equation} #### Question 7. answer : -1;-1 >MIPS : >\begin{equation} A + B = -2^{15} + (2^{15} - 1) = -1 \end{equation} RISC-V : >\begin{equation} A + B = -2^{11} + (2^{11} - 1) = -1 \end{equation} #### Question 8. answer : 13 >因為指數部分 with bias 7 所以 $0111_2$ 為0。考慮 >\begin{equation} (55)_{16} = (0101 0101)_2 = 1.101_2 \times 2^3 = 1101_2 = 13 \end{equation} 首個0表正數。 第1到4個數$1010_2 = 0111_2 + 3$,所以為3次方。 最後三碼為$101$,因為假設 hidden leading 1,所以非指數部分為$1.101$ #### Question 9. answer : 11;16 >\begin{align} \text{ The number of sets } &= \frac{256 KB}{4 \times 32} = 2048 = 2^{11} \\ \text{ Tag bits } &= 32-11-5=16 \end{align} ## 計算機數學 ### Question 1. #### 1. answer : upper bound($O(n^2)$) ; lower bound($O(n)$) >因為為connected >upper bound = $K_n$ ; lower bound = spanning tree #### 2. answer : Adjacency Matrix($O(1)$) ; Adjacency List($O(\max(u_i),\forall u_i \in V$) ) ; Adjacency Matrix is faster #### 3. answer : Adjacency Matrix($O(n^2)$) ; Adjacency List($O(m)$) ;Adjacency List is faster #### 4. answer : Adjacency Matrix($O(n^2)$) ; Adjacency List($O(n+m)$) ;Adjacency List is faster #### 5. answer : Adjacency Matrix($O(n^2)$) ; Adjacency List($O(n+m)$) ;Adjacency List is less #### 6. answer : Adjacency Matrix($O(n^2)$) ; Adjacency List($O(n+m)$) ;Adjacency Matrix is less >兩者存的數量差不多,但list還要存到下一個點的link。 ### Question 2. 用EDF(Earliest Deadline First)可minimizes maximum lateness. | | Job 5 | Job 1 | Job 4 | Job 2 | Job 6 | Job 3 | | ---- | ----- | ----- | ----- | ----- | ----- | ----- | | time | 0-3 | 3-5 | 5-6 | 6-10 | 10-13 | 13-15 | ### Question 3. #### 1. 14個人座成一圓桌的排列數 : $\frac{14!}{14}$ 14個人座成一圓桌且#1和#2相鄰的排列數 : $2 \times \frac{13!}{14}$ \begin{equation} \Pr[\text{# 1 and #2 are not adjacent}] = 1 - \frac{2 \times \frac{13!}{14}}{\frac{14!}{14}} = 1 - \frac{1}{7} = \frac{6}{7} \end{equation} #### 2. 分情況討論 : Case 1 : (1,1,4) 分配方法數 : \begin{equation} \frac{1}{2!} \begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} = \frac{1}{2}\times 30 = 15 \end{equation} Case 2 : (1,2,3) 分配方法數 : \begin{equation} \begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} = 6 \times 10 = 60 \end{equation} Case 3 : (2,2,2) 分配方法數 : \begin{equation} \frac{1}{3!} \begin{pmatrix} 6 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \frac{1}{6} \times 15 \times 6 = 15 \end{equation} 總方法數有$15 + 60 + 15 = 90$個 #### 3. 1到14中找三個不連續整數,假設找$x_1,x_2,x_3$ \begin{equation} x_0 = 1 \leq x_1 < x_2 < x_3 \leq 14 = x_4 \end{equation} 假設$y_i = x_i - x_{i-1}$,則上式可改寫成 \begin{equation} y_1 + y_2 +y_3 +y_4 = 13 \end{equation} 須滿足條件 \begin{cases} y_1 &\geq 0 \\ y_2 , y_3 &\geq 2 \\ y_4 &\geq 0 \\ \end{cases} 總數為 \begin{equation} \begin{pmatrix} 13 - 2 \times 2 +3 \\ 3 \end{pmatrix} = \begin{pmatrix} 12 \\ 3 \end{pmatrix} = \frac{12 \times 11 \times 10}{6} = 220 \end{equation} #### 4. 分情況討論 Case 1 : $X=0$ \begin{equation} \frac{\begin{pmatrix} 2 \\ 2 \end{pmatrix}}{\begin{pmatrix} 6 \\ 2 \end{pmatrix}} \times \frac{\begin{pmatrix} 4 \\ 2 \end{pmatrix}}{\begin{pmatrix} 8 \\ 2 \end{pmatrix}} = \frac{1}{15} \frac{6}{28} = \frac{6}{420} \end{equation} Case 2 : $X=1$ \begin{equation} \frac{\begin{pmatrix} 4 \\ 1 \end{pmatrix}\begin{pmatrix} 2 \\ 1 \end{pmatrix}}{\begin{pmatrix} 6 \\ 2 \end{pmatrix}} \times \frac{\begin{pmatrix} 4 \\ 2 \end{pmatrix}}{\begin{pmatrix} 8 \\ 2 \end{pmatrix}} + \frac{\begin{pmatrix} 2 \\ 2 \end{pmatrix}}{\begin{pmatrix} 6 \\ 2 \end{pmatrix}} \times \frac{\begin{pmatrix} 4 \\ 1 \end{pmatrix}\begin{pmatrix} 4 \\ 1 \end{pmatrix}}{\begin{pmatrix} 8 \\ 2 \end{pmatrix}}= \frac{8}{15} \frac{6}{28} + \frac{1}{15} \frac{16}{28} = \frac{4}{35} + \frac{4}{105} = \frac{64}{420} \end{equation} Case 3 : $X=2$ \begin{equation} \frac{\begin{pmatrix} 4 \\ 2 \end{pmatrix}}{\begin{pmatrix} 6 \\ 2 \end{pmatrix}} \times \frac{\begin{pmatrix} 4 \\ 2 \end{pmatrix}}{\begin{pmatrix} 8 \\ 2 \end{pmatrix}} + \frac{\begin{pmatrix} 4 \\ 1 \end{pmatrix}\begin{pmatrix} 2 \\ 1 \end{pmatrix}}{\begin{pmatrix} 6 \\ 2 \end{pmatrix}} \times \frac{\begin{pmatrix} 4 \\ 1 \end{pmatrix}\begin{pmatrix} 4 \\ 1 \end{pmatrix}}{\begin{pmatrix} 8 \\ 2 \end{pmatrix}}+\frac{\begin{pmatrix} 2 \\ 2 \end{pmatrix}}{\begin{pmatrix} 6 \\ 2 \end{pmatrix}} \times \frac{\begin{pmatrix} 4 \\ 2 \end{pmatrix}}{\begin{pmatrix} 8 \\ 2 \end{pmatrix}} = \frac{36+128+6}{420} = \frac{170}{420} \end{equation} Case 4 : $X=3$ \begin{equation} \frac{\begin{pmatrix} 4 \\ 2 \end{pmatrix}}{\begin{pmatrix} 6 \\ 2 \end{pmatrix}} \times \frac{\begin{pmatrix} 4 \\ 1 \end{pmatrix}\begin{pmatrix} 4 \\ 1 \end{pmatrix}}{\begin{pmatrix} 8 \\ 2 \end{pmatrix}} + \frac{\begin{pmatrix} 4 \\ 1 \end{pmatrix}\begin{pmatrix} 2 \\ 1 \end{pmatrix}}{\begin{pmatrix} 6 \\ 2 \end{pmatrix}} \times \frac{\begin{pmatrix} 4 \\ 2 \end{pmatrix}}{\begin{pmatrix} 8 \\ 2 \end{pmatrix}} = \frac{96+48}{420} = \frac{144}{420} \end{equation} Case 5 : $X=4$ \begin{equation} \frac{\begin{pmatrix} 4 \\ 2 \end{pmatrix}}{\begin{pmatrix} 6 \\ 2 \end{pmatrix}} \times \frac{\begin{pmatrix} 4 \\ 2 \end{pmatrix}}{\begin{pmatrix} 8 \\ 2 \end{pmatrix}} = \frac{36}{420} \end{equation} 驗算 \begin{equation} \frac{6}{420} + \frac{64}{420} + \frac{170}{420} + \frac{144}{420} + \frac{36}{420} = 1 \end{equation} $X$的分佈如下 \begin{equation} X = \begin{cases} 0 &: \frac{6}{420} = \frac{1}{70} \\ 1 &: \frac{64}{420} = \frac{16}{105} \\ 2 &: \frac{170}{420} = \frac{17}{42} \\ 3 &: \frac{144}{420} = \frac{12}{35} \\ 4 &: \frac{36}{420} = \frac{3}{35} \\ 其餘實數 &: 0 \\ \end{cases} \end{equation} ### Question 4. #### 1. 為best rank-1 approximation,所以挑$\max(\sqrt{5},3\sqrt{5}) = 3\sqrt{5}$。答案為 \begin{equation} \begin{pmatrix} \frac{1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \\ \end{pmatrix} 3\sqrt{5} \begin{pmatrix} \frac{1}{\sqrt{2}} &\frac{1}{\sqrt{2}} \\ \end{pmatrix} = 3\sqrt{5} \begin{pmatrix} \frac{1}{2\sqrt{5}} &\frac{1}{2\sqrt{5}} \\ \frac{3}{2\sqrt{5}} &\frac{3}{2\sqrt{5}}\\ \end{pmatrix} = \begin{pmatrix} \frac{3}{2} &\frac{3}{2} \\ \frac{9}{2} &\frac{9}{2}\\ \end{pmatrix} \end{equation} #### 2. answer : false >\begin{equation} char(A) = (3-x)(5-x) \Rightarrow \text{ eigenvalues are } 3,5 \end{equation} ### Question 5. #### 1. answer : true >pf :(證一個更廣的性質 : AB,BA 有相同eigenvalue) >給定$AB$的一個特徵根$\lambda$ >\begin{align} ABv &= \lambda v \\ BABv &= B\lambda v \\ BA(Bv) &= \lambda B v \\ \end{align} 所以$\lambda$也為$BA$的一個特徵根 #### 2. answer : false >反例取 >\begin{equation} P =\begin{pmatrix} 0.3 &0.7 \\ 0.7 &0.3 \\ \end{pmatrix} \Rightarrow P^T P = \begin{pmatrix} 0.3 &0.7 \\ 0.7 &0.3 \\ \end{pmatrix}\begin{pmatrix} 0.3 &0.7 \\ 0.7 &0.3 \\ \end{pmatrix} \neq I \end{equation} #### 3. answer : false >只要調$D$對角線上的不同數字即可產生不同的解 #### 4. answer : false >$L$ is zero transformation #### 5. answer : true >已知定理 >\begin{equation} Ax=b \text{ has a unique least-squares solution. } \Leftrightarrow \text{ The columns of $A$ are linearly independent. } \end{equation} Overdetermined表等式比未知數多,反例可取 \begin{align} Ax &= b \\ \begin{pmatrix} 1 &0 &2\\ 0 &1 &3\\ 1 &1 &1\\ 1 &1 &1\\ \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \end{pmatrix} &=\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ \end{pmatrix} \end{align} ### Question 6. We may say that $T$ is 1-1 >pf: >\begin{align} T(x_1) &= T(x_2) \\ x_1 + C &= x_2 + C \\ x_1 &= x_2 \end{align} ### Question 7. #### 1. >$\lambda$為matrix $A$的eigenvalue $\Leftrightarrow$ $\det(A-\lambda I) = 0$ \begin{equation} \det(A) = 0 \hspace{5pt} \text{ or } \hspace{5pt} \det(A-I) = 0 \end{equation} 簡化一下得 \begin{equation} \det(A) \det(A-I) = 0 \end{equation} #### 2. 因為A為square matrix所以 \begin{equation} \det(A^2-A) = \det(A) \det(A-I) = 0 \end{equation} ### Question 8. 因為$x \in \mathbb{R}^2$所以 $rank(T)$ 得所有可能為 $2,1,0$ 。 1 : 如果$rank(T) = 2$ 考慮$e_1 = (1,0) , e_2 = (0,1)$則 \begin{align} c_1 T(e_1) + c_2 T(e_2) &\neq 0 \hspace{5pt} \text{ if } c_1,c_2 \neq 0 \\ T(e_1) &\neq \frac{-c_2}{c_1} T(e_2) \end{align} 也就是說$T(e_1),T(e_2)$不共線,矛盾。 2 : 如果$rank(T) = 0$ 考慮$e_1 = (1,0) , e_2 = (0,1)$則 \begin{equation} T(e_1) = T(e_2) = 0 (\Rightarrow\!\Leftarrow) \end{equation} 也就是說$T(e_1),T(e_2)$不共線,矛盾。 由1,2知 $rank(T) = 1$ # 113台大 答案表 | Q1 | Q2 | Q3 | Q4 | Q5 | | -- | -- | -- | -- | -- | | 2 | 4 | 24 | $2 \times 3^n + (-4)^n$ | 4;4;no;yes | | Q6 | Q7 | Q8 | Q9 | Q10 | |-- | -- | -- | -- | --- | | $\frac{11}{9}$ | $span \{(0,0,0,1) \}$ | (2,1,3) | $rank(V)$ | --- | ## 離散 ### Question 1. \begin{equation} \left| \{''A'',''B''\}^3 \right| = 8 \hspace{ 3pt } ; \left| \hspace{ 3pt } \{1,2,3\} \right| = 3 \end{equation} 所以 \begin{align} z = 3^8 = 81 \times 81 &= 4 \times 4\mod 7 \\ &= 2 \mod 7 \end{align} ### Question 2. 由觀察知w須為false,接著窮舉 | x | y | z | x $\wedge$ $\neg$ y $\wedge$ $\neg$ z | $\neg$ x $\wedge$ y | $\neg$ x $\wedge$ z | |:---:|:---:|:---:|:-------------------------------------:|:--------------------:|:--------------------:| | T | T | T | F | F | F | | F | T | T | F | T | T | | T | F | T | F | F | F | | T | T | F | F | F | F | | F | F | T | F | F | T | | F | T | F | F | T | F | | T | F | F | T | F | F | | F | F | F | F | F | F | 總共有四個可能 ### Question 3. \begin{equation} \Phi(90) = 90 (1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{5}) = 90\times \frac{1}{2}\times \frac{2}{3}\times \frac{4}{5} = 24 \end{equation} ### Question 4. 特徵方程式為 \begin{equation} x^2+x-12 = 0 \Rightarrow (x+4)(x-3) = 0 \Rightarrow x=3,-4 \end{equation} 所以解為 \begin{equation} a_n = c_1 3^n + c_2 (-4)^n \end{equation} 帶入條件 \begin{cases} a_0 = c_1 + c_2 = 3 \\ a_1 = 3c_1 -4c_2 = 2 \\ \end{cases} 得$(c_1,c_2) = (2,1)$所以 \begin{equation} a_n = 2 \times 3^n + (-4)^n \end{equation} ### Question 5. #### 1. ![螢幕擷取畫面 2024-06-26 133431](https://hackmd.io/_uploads/H1JKO7FIA.png) 觀察$1,9,5,7$形成$K_4$所以chromatic number $\geq 4$又上圖提供一4色塗法,所以chromatic number $= 4$ #### 2. 取$2,3,8,9$得大小為4 #### 3. 圖為連通但$1,3,4,9$的度數為奇數,不為全偶數所以不是 #### 4. 路徑 \begin{equation} 1 \to 8 \to 4 \to 2 \to 6 \to 3 \to 7 \to 5 \to 9 \to 1 \end{equation} 所以是。 ## 線代 ### Question 6. \begin{equation} \min ||Ax-b|| \Rightarrow \text{ 即解 } A^T Ax = A^T b \end{equation} 開算 \begin{align} A^T Ax &= A^T b \\ \begin{pmatrix} 1 &0 &1 \\ 0 &1 &-1 \\ -1 &2 &-3 \\ \end{pmatrix} \begin{pmatrix} 1 &0 &-1 \\ 0 &1 &2 \\ 1 &-1 &-3 \\ \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \end{pmatrix} &= \begin{pmatrix} 1 &0 &1 \\ 0 &1 &-1 \\ -1 &2 &-3 \\ \end{pmatrix}\begin{pmatrix} 1 \\ 0 \\ 2 \\ \end{pmatrix} \\ \begin{pmatrix} 2 &-1 &-4 \\ -1 &2 &5 \\ -4 &5 &14 \\ \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \end{pmatrix} &=\begin{pmatrix} 3 \\ -2 \\ -7 \\ \end{pmatrix} \\ \end{align} 考慮 \begin{equation} \begin{pmatrix} 2 &-1 &-4 &3\\ -1 &2 &5 &-2\\ -4 &5 &14 &-7\\ \end{pmatrix} \to \begin{pmatrix} 0 &3 &6 &-1\\ -1 &2 &5 &-2\\ 0 &-3 &-6 &1\\ \end{pmatrix} \to \begin{pmatrix} 0 &3 &6 &-1\\ -1 &2 &5 &-2\\ 0 &0 &0 &0\\ \end{pmatrix} \end{equation} 所以解為 \begin{equation} X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{4}{3} +t \\ -\frac{1}{3} - 2t \\ t \end{pmatrix} \end{equation} 所以 \begin{align} (|| X ||_2)^2 &= \frac{16}{9} + \frac{8t}{3} + t^2 + \frac{1}{9} + \frac{4t}{3} + 4t^2 + t^2 \\ &= \frac{17}{9} + 4t + 6t^2 \\ &= 6(t^2 + \frac{2}{3}t + \frac{1}{9}) - \frac{6}{9} + \frac{17}{9}\\ &=6(t+\frac{1}{3})^2 + \frac{11}{9} \end{align} 因此 \begin{equation} \min(|| X ||_2)^2 = \frac{11}{9} \end{equation} ### Question 7. 先化簡$R$ \begin{equation} \begin{pmatrix} \frac{1}{3} &\frac{-2}{3} &\frac{1}{3} &0\\ \frac{-3}{2} &0 &\frac{3}{2} &0\\ \end{pmatrix} \to \begin{pmatrix} 1 &-2 &1 &0\\ -3 &0 &3 &0\\ \end{pmatrix} \to \begin{pmatrix} 1 &-2 &1 &0\\ 0 &-6 &6 &0\\ \end{pmatrix}\to \begin{pmatrix} 1 &-2 &1 &0\\ 0 &1 &-1 &0\\ \end{pmatrix}\to \begin{pmatrix} 1 &0 &-1 &0\\ 0 &1 &-1 &0\\ \end{pmatrix} \end{equation} 再化簡$S$ \begin{equation} \begin{pmatrix} 1 &0 &-1 &0\\ 1 &-1 &0 &0\\ -1 &1 &0 &1\\ 1 &0 &-1 &1\\ \end{pmatrix} \to \begin{pmatrix} 1 &0 &-1 &0\\ 1 &-1 &0 &0\\ 0 &0 &0 &1\\ 0 &0 &0 &1\\ \end{pmatrix} \to \begin{pmatrix} 1 &0 &-1 &0\\ 0 &-1 &1 &0\\ 0 &0 &0 &1\\ 0 &0 &0 &0\\ \end{pmatrix} \to \begin{pmatrix} 1 &0 &-1 &0\\ 0 &1 &-1 &0\\ 0 &0 &0 &1\\ 0 &0 &0 &0\\ \end{pmatrix} \end{equation} 所以 \begin{equation} U = span \{\begin{pmatrix} 0 &0 &0 &1 \end{pmatrix} \} \end{equation} ### Question 8. 硬算 \begin{cases} &p(0) = 2 = a \\ &p(1) = 0 = a + b + c\\ &p(2) = 1 = a + 2b + c \\ \end{cases} 得$(a,b,c) = (2,1,3)$ ### Question 9. \begin{equation} f_T(T) = T^4 - 2T^2 +1 = 0 \end{equation} 分解$S$ \begin{equation} S = (T^4 - 2T^2 +1)(T^2 - 2T +1) - 1 = -1 \end{equation} 所以 \begin{equation} rank(S) = rank(V) \end{equation} ### Question 10. # 心得 網上有許多人的讀書計畫與各科心得寫的蠻好的,我想著重在最後一個月的準備心得。在最後一個月時,==一定要刷考古題==,我是刷了四大、中央和台科近三到五年的題目,在刷的過程會發現自己有哪些疏漏,同時可以看到自己能把握的範圍大概有哪些,建議盡量把偏門的都放掉,只專注在能掌握的部分,因為只剩一個月,讀新的範圍會排擠到練熟基本範圍的時間,同時還容易把考前最重要的部分──心態,給搞差,想教授是否在搞,其實如果把基本題的分數加起來大概都比率取分數高。 作息方面我是7:30時起來準備一下,在8點就便到圖書館開始讀書,一般來說我是把時段分成早上(8:00-11:30)、下午(13:00-17:00)、晚上(19:00-22:00)。一般來說早上以寫考古題為主,下午和晚上則是檢討和複習,下午和晚上的差別是在晚上會用筆電,一方面是因為讀了幾個小時後常常覺得很躁,所以便用筆電來聽歌(~~那時聽了不少孫燕姿的歌,聽她的歌便有種回到小時候安心的感覺~~),一方面是查網路上的解析和觀念。圖書館十點閉館後,回宿舍滑個手機整理一下,大概在12點前便會強迫自己一定要躺到床上,不管睡不睡得著,睡不著時就放空,當時會想要不要利用這些時間多讀一下書,試著讀一下後發現容易分心,還不如早點休息,過個幾天後身體就適應這種作息了。作息方面還是要以個人感到舒適為主,像我雖然拆成三個時段,但如果當天很躁,還是會出去騎個2、30分鐘的腳踏車舒服一下。個人覺得作息最重要的是控制3c產品使用的時間和時段,我早上和下午時就盡量不碰,讓自己的效率拉滿。 ==考交大時,一定要提早出發,大概6:50就要出發比較保險==,不然會被交通搞到心情,除非你就住在交大走路就到的範圍。我當時在7點初請旅館幫我叫車,但車到7點半左右才到,在進交大門口那段路時還塞了一下,最後離考試只剩十分鐘才到考場,心情整個受到影響。考清大時,或許當天跟成大撞才沒出事,對了別像我一樣要離開清大時,想說隨便走都會出去,而開始瞎走,差點就迷失在校園之中。 個人覺得最後衝刺時最重要的==心態穩住==。當時剩一個禮拜在網路上查解答時,看到有人說那屆台大的題目跟題庫班蠻像的,我便去找題庫班題目,發現題目太多我根本看不完,還白白浪費半天的時間(原本想說寫考古題就好便沒去題庫班)。網路上還有人在說歷屆拿多少多少分,我整個開抖想說明年見,自己在那邊emo整個晚上。最後幾個禮拜堅持自己的策略,能穩住的東西不多,至少心態拿捏住,把最後一段路給走完吧,祝你們順利。

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully