FANFNA
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # Chapter 2 Vector Spaces [TOC] ## 2.1 Vector Spaces ### Vector Spaces Axioms Definition 1. 加法交換性:x + y = y + x —> ex : 減法不滿足交換性 2. 加法結合性:(x + y) + z = x + (y + z) 3. 加法單位元素:x + 0 = x —> ex : (x1,y1) + (x2,y2) = (x,0); x+y = min(x,y) 皆不存在零向量 4. 加法反元素:x + (-x) = 0 5. 乘法分配性[1]:a(x + y) =ax + ay 6. 乘法分配性[2]:(a + b) x = ax + bx —> ex : 對係數操作者可能不滿足乘法分配性2 7. 乘法結合性:(a b)x = a(bx) 8. 乘法單位元素:1x = x 9. 10. 加法純量積封閉性 ###### 常見的vector spaces - 歐式空間 - 矩陣空間 - 多項式空間 - 函數空間:Cn : 微分n次的都是Cn的子空間 ## 2.2 Subspaces - 子空間的充要條件:所有a, b ∈ F , u, v ∈ W 則ax + by ∈W 也就是說子空間只需驗證加法與純量積封閉性 - 子空間的必要條件:可用0 ∈ W, -v ∈ W 快速判斷 ###### W1與W2之關係 - W1, W2為V的子空間,則W~1~ ∩ W~2~ 亦為V的子空間 (聯集不一定是!) - W1 ∪ W2為V的子空間,則W~1~⊆ W~2~ 或 W2 ⊆ W1 和空間:W1 + W2與兩者聯集不同,W~1~ + W~2~ = (w1 + w2 | w~1~ ⊆ W~1~, w~2~ ⊆ W~2~)W~1~ + W~~ = Span(S~1~ ∪ S~2~),即Span(S~1~) + Span(S~2~) = Span(S~1~ ∪ S~2~) ###### 基本子空間 - **行空間:CS(A)** = { Ax | x ∈ F^nx1^ },注意該子空間張在對應域 - **核空間:ker(A)** = ({ x ∈ F^nx1^ | Ax = 0 ),注意該子空間張在定義域 - y = (AB)x = A(Bx) ⊆ CS(A) 所以CS(AB)⊆CS(A) 又兩者皆為R的subspace, 所以CS(AB)為CS(A)的subspace ## 2.3 Span and Linear Combination ### linear combination: v = a~1~v~1~ + a~2~v~2~ + … + a~n~v~n~ - span(S):把某一組基底所有可能linear combination合成的向量收集起來 (把S的subspace補起來) - span(S)為V的subspace - span(S)為包含S的minimum subspace - 如果S已經為V的subspace, 則span(S) = S - span(∅) = {零空間} , 因為任何subspace包含nullspace(kernel) - S1⊆S2 則 span(S1)⊆span(S2) ```Span(S)題目:用定義做! ex : 1a + 3b + -2c = 4 -2a + -7b + 1c = 9 3a + 10b + 9c = 19 ``` - 列運算後行向量之線性組合關係式不變,kernel不變 ### linear independent - 概念:一個有無冗員的概念 - 定義:v~n~ = a~1~v~1~ + a~2~v~2~ + … + a~n~v~n~ 時,a~1~ = a~2~ = … = a~n~=0 - 矩陣版定義:當Ax = 0 (homogeneous) 時, x這個向量一定全為零,只有在A是singular時,上述會成立 - Wronskian matrix: 只要Wronskian matrix不等於0都是獨立 - 但Wronskian matrix為0不一定是相依,因此沒獲得任何情報 ## 2.4 Basis and Dimension ### basis 和 dimension - 定義:span(b) = V,b linear independent,則稱b為V的一組basis,且稱b的元素個數為V的dimension = dim(V) - 性質: - basis的每個vector對生成都有幫助 - 任一組basis的向量個數必定唯一,但不只有唯一一組 - 所有向量空間都有基底 - 所有在V中的向量,都可以唯一寫成V的basis的線性組合 ![](https://i.imgur.com/YgFjzp8.png) ### 線性獨立 - 三個獨立生成相關的定理 - 生成剪裁定理:多的 (造成dependent的vector) 幹掉 - 獨立擴增定理:可找到u不屬於span(S),讓span(S)加上u仍independent,可一直加直到又independent又生成V - Steinitz代換定理:W為V的subspace dim(W) = 5, dim(V) = 7,W每一組basis皆可加某2個vector形成V的1個basis,(但V減回去不行) ### 可逆的充要條件 - **ker(A)** = {0} - A為行獨立,即A的行向量為線性獨立 (F的basis) - A行生成F~nx1~,即A的行向量生成F~nx1~ - **CS(A)** = F^nx1^ - dim(ker(A)) = 0 - dim(CS(A)) = n ### 可逆矩陣 矩陣必是方陣才有資格談 ##### 方陣的行列式|A| = 0,稱矩陣A為singular; - 可逆矩陣就是nonsingular - **如果A為singular,則AX=0有無窮解,AX=b有無窮解或者無解** - **如果A為nonsingular,則AX=0有且只有唯一零解,AX=b有唯一解** - 直和:假設 W1 , W2 , W3 , … , Wn 為 V 的子空間,則滿足以下兩個條件稱為直和 W~1~ , W~2~ , W~3~ , … , Wn 為獨立子空間 (例如 W1∩(W~2~+W~3~)= {0} ... 共三個等式) (上式等價於 dim(W~1~ + W~2~ + W~3~ + … + W~n~) = dim(W~1~) + dim(W~2~) + … + dim(W~3~))+ … + Wn (和生成) ## 2.5 Rank and Nullity - The rank of a matrix is defined as the maximum number of ***linearly independent columns*** in the matrix. <font color ="red">Nullity</font> = **Number of columns - rank** ![](https://i.imgur.com/FAMH7eZ.png)

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully