Yun-Tao Chen
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # numpy & pandas 筆記 (1) ***本篇資料來源為莫煩 python:** https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/ 安裝: `pip3 install numpy` `pip3 install pandas` ## numpy array - 基本用法 array宣告, dimension, shape, size ```python=1 import numpy as np array = np.array([[1,2,3], [4,5,6]]) print(array) print('number of dim:',array.ndim) print('shape',array.shape) print('size:',array.size) ''' output [[1 2 3] [4 5 6]] ('number of dim:', 2) ('shape', (2, 3)) ('size:', 6) ''' ``` - 定義資料格式 ```python=1 # 使用 dtype 定義資料格式 a = np.array([2,33,4],dtype=np.int) print(a) # [ 2 33 4] print(a.dtype) # int64 a = np.array([2,33,4],dtype=np.int32) print(a.dtype) # int32 a = np.array([2,33,4],dtype=np.float) print(a.dtype) # float64 a = np.array([2,33,4],dtype=np.float32) print(a.dtype) # float32 ``` - array 的各種宣告方法 ```python=1 # 宣告全部是 0 的 array zeros = np.zeros( (3,4) ) print(zeros) '''output [[ 0. 0. 0. 0.] [ 0. 0. 0. 0.] [ 0. 0. 0. 0.]] ''' # 宣告全部是 1 的 array 同樣可以使用 dtype 定義資料型態 ones = np.ones( (4,3), dtype=np.int16 ) print(ones) '''output [[1 1 1] [1 1 1] [1 1 1] [1 1 1]] ''' # 宣告 empty 等同於得到一個幾乎接近 0 的 array empty = np.empty((3,4)) print(empty) ''' output [[ 0.00000000e+000 4.94065646e-324 9.88131292e-324 1.48219694e-323] [ 1.97626258e-323 2.47032823e-323 2.96439388e-323 3.45845952e-323] [ 3.95252517e-323 4.44659081e-323 4.94065646e-323 5.43472210e-323]] ''' # 宣告有序陣列 a = np.arange(10,20,2) print(a) # [10 12 14 16 18] # 宣告 0 ~ 11 得陣列,形狀為 3x4 a = np.arange(12).reshape( (3,4) ) print(a) '''output [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] ''' # 宣告一個等分的線段 array a = np.linspace(1,10,5) # 起點 1 終點 10,分 5 等份 print(a) # [ 1. 3.25 5.5 7.75 10. ] # 宣告等分的線段 array 並且排列成 2x3 a = np.linspace(1,10,6).reshape(2,3) # 起點 1 終點 10,分 6 等份 print(a) '''output [[ 1. 2.8 4.6] [ 6.4 8.2 10. ]] ''' ``` ## numpy 矩陣 (array) 運算 :::info 矩陣當中,到底行,列的方向是什麼? 英文: - row: 橫的 - column: 直的 中文: - 台灣: 直行橫列 - row: 列 - column: 行 - 大陸: 直列橫行 - row: 行 - column: 列 參考資料: https://tw.answers.yahoo.com/question/index?qid=20051014000014KK01201 ::: 由於中文實在是太混亂了,以下我只要解釋到行列相關的一律採用英文 row, column - 對於矩陣中所有元素運算 ```python=1 # coding=utf-8 import numpy as np a = np.array([10,20,30,40]) b = np.arange(4) print(a,b) # [10 20 30 40] [0 1 2 3] # 對於每個元素取平方 c = b**2 print(c) # [0 1 4 9] s = 10*np.sin(a) print(s) # [-5.44021111 9.12945251 -9.88031624 7.4511316 ] # 比較運算 print(b) # [0 1 2 3] print(b<3) # [ True True True False] print(b==3) # [False False False True] ``` - 矩陣與矩陣之間的運算 ```python=1 # coding=utf-8 import numpy as np a = np.array([[1,1], [0,1]]) b = np.arange(4).reshape((2,2)) print(a) # [[1 1] # [0 1]] print(b) #[[0 1] # [2 3]] # 逐一相乘 print(a*b) # [[0 1] # [0 3]] # 矩陣乘法 (以下兩種寫法是相等的) print(np.dot(a,b)) print(a.dot(b)) #[[2 4] # [2 3]] ``` - 找矩陣當中的總和,最大值,最小值 ```python=1 # coding=utf-8 import numpy as np # 宣告隨機生成的 array a = np.random.random((2,4)) print(a) # [[ 0.44842423 0.78949907 0.8370462 0.44611223] # [ 0.14324946 0.26730942 0.45553012 0.20880903]] # 求矩陣元素總和 print(np.sum(a)) # 3.59597976167 # 求矩陣元素最小值 print(np.min(a)) # 0.14324946148 # 求矩陣元素最大值 print(np.max(a)) # 0.837046196628 ``` - 使用 axis 針對矩陣中的行或列找總和,最大值,最小值 ```python=1 # coding=utf-8 import numpy as np # 使用 axis 針對矩陣中的 row, column 做運算 a = np.array([[1,2,3], [9,0,6]]) # 求矩陣 row 元素總和 print(np.sum(a,axis=1)) # [ 6 15] # 1 + 2 + 3 = 6 # 9 + 0 + 6 = 15 # 求矩陣 column 元素最小值 print(np.min(a,axis=0)) # [1 0 3] # min(1,9) = 1 # min(2,0) = 0 # min(3,6) = 3 # 求矩陣 row 元素最大值 print(np.max(a,axis=1)) # [3 9] # max(1,2,3) = 3 # max(9,0,6) = 9 ``` - 計算矩陣的平均值與中位數 ```python=1 #coding=utf-8 import numpy as np a = np.arange(2,14).reshape(3,4) print(a) # [[ 2 3 4 5] # [ 6 7 8 9] # [10 11 12 13]] # 平均值 print(np.mean(a)) # 7.5 print(a.mean()) # 7.5 print(np.average(a)) # 7.5 # 搭配 axis 可以得到: # axis = 0: 針對逐 column 的平均值 print(np.mean(a,axis=0)) # [ 6. 7. 8. 9.] ''' mean of (2,6,10) = 6 mean of (3,7,11) = 7 mean of (4,8,12) = 8 mean of (5,9,13) = 9 ''' # axis = 1: 針對逐 row 的平均值 print(np.mean(a,axis=1)) # [ 3.5 7.5 11.5] ''' mean of (2,3,4,5) = 3.5 mean of (6,7,8,9) = 7.5 mean of (10,11,12,13) = 11.5 ''' # 中位數 print(np.median(a)) # 7.5 ``` - 逐步累加 (cumsum) 與逐步差 (diff) ```python=1 #coding=utf-8 import numpy as np # 逐步累加 print(np.cumsum(a)) # [ 2 5 9 14 20 27 35 44 54 65 77 90] # 2 # 2 + 3 = 5 # 2 + 3 + 4 = 9 # 依此類推 # 逐步累差 print(np.diff(a)) ''' [[1 1 1] [1 1 1] [1 1 1]] ''' ``` - 矩陣的排序 sort 與 transpose ```python=1 #coding=utf-8 import numpy as np a = np.random.random((3,4)) print(a) ''' [[ 0.99821757 0.22533492 0.90690435 0.40504797] [ 0.73937987 0.776222 0.60485253 0.44401583] [ 0.33139018 0.14091604 0.81036999 0.74671883]] ''' print(np.sort(a)) ''' 效果:逐列排序 [[ 0.22533492 0.40504797 0.90690435 0.99821757] [ 0.44401583 0.60485253 0.73937987 0.776222 ] [ 0.14091604 0.33139018 0.74671883 0.81036999]] ''' # 矩陣的 transpose print(np.transpose(a)) ''' [[ 0.99821757 0.73937987 0.33139018] [ 0.22533492 0.776222 0.14091604] [ 0.90690435 0.60485253 0.81036999] [ 0.40504797 0.44401583 0.74671883]] ''' ``` - clip 功能簡介,可以拿來篩選過濾用 ```python=1 #coding=utf-8 import numpy as np a = np.arange(2,14).reshape(3,4) print(a) # [[ 2 3 4 5] # [ 6 7 8 9] # [10 11 12 13]] # clip 功能 print(np.clip(a,5,9)) # 意思:所有小於等於 5 的數都用 5 代替; 所有大於等於 9 的數都用 9 代替 ''' [[5 5 5 5] [6 7 8 9] [9 9 9 9]] ''' ``` ## numpy array 的 index (索引) - 找出矩陣當中最大最小值所在的位置 index (索引值): argmin, argmax ```python=1 #coding=utf-8 import numpy as np a = np.arange(2,14).reshape(3,4) print(a) # [[ 2 3 4 5] # [ 6 7 8 9] # [10 11 12 13]] # 最小值的索引 print(np.min(a)) # 2 最小值 print(np.argmin(a)) # 0 最小值的索引 # 最大值的索引 print(np.max(a)) # 13 最大值 print(np.argmax(a)) # 11 最大值的索引 ``` - **Numpy Array Indexing** ```python=1 #coding=utf-8 import numpy as np a = np.arange(3,15).reshape(3,4) print(a) ''' [[ 3 4 5 6] [ 7 8 9 10] [11 12 13 14]] ''' # 以下兩種寫法相等 print(a[2][1]) # 12 print(a[2,1]) # 12 # 指定印出 使用 : 設定範圍 print(a[:,:]) ''' [[ 3 4 5 6] [ 7 8 9 10] [11 12 13 14]] ''' print(a[1:,:]) ''' [[ 7 8 9 10] [11 12 13 14]] ''' print(a[0:2,:]) ''' [[ 3 4 5 6] [ 7 8 9 10]] ''' print(a[:,1:]) ''' [[ 4 5 6] [ 8 9 10] [12 13 14]] ''' print(a[:,1:3]) ''' [[ 4 5] [ 8 9] [12 13]] ''' ``` - **使用 for 與 transpose** ```python=44 # for 預設是可以迭代每一 row (橫向) for row in a: print(row) ''' [3 4 5 6] [ 7 8 9 10] [11 12 13 14] ''' # 使用 transpose 搭配 for 迭代印出每一 column (直向) for column in a.T: print(column) ''' [ 3 7 11] [ 4 8 12] [ 5 9 13] [ 6 10 14] ''' ``` - **使用 flatten 與 flat 把二維 array 攤平** ```python=62 # 使用 flatten (flat 是迭代版本) print(a.flatten()) # [ 3 4 5 6 7 8 9 10 11 12 13 14] # 使用 for loop 搭配 flat 將矩陣的每一個元素逐一印出 for item in a.flat: print(item) ''' 3 4 5 6 7 8 9 10 11 12 13 14 ''' ``` ## numpy array 的 merge (合併) - **使用 vertical stack : vstack 垂直合併兩個 array** ```python=1 # coding=utf-8 import numpy as np A = np.array([1,1,1]) B = np.array([2,2,2]) # vertical stack 垂直方向 上下合併 C = np.vstack((A,B)) print(A.shape) # (3,) print(B.shape) # (3,) print(C.shape) # (2, 3) print(C) ''' [[1 1 1] [2 2 2]] ''' ``` - **使用 horizontal stack : hstack 水平合併兩個 array** ```python=1 # coding=utf-8 import numpy as np A = np.array([1,1,1]) B = np.array([2,2,2]) # horizontal stack 水平方向 左右合併 D = np.hstack((A,B)) print(D.shape) # (6,) print(D) # [1 1 1 2 2 2] ``` - **使用 newaxis 做 array 的轉置與合併應用** ```python=1 # coding=utf-8 import numpy as np A = np.array([1,1,1]) print(A) # [1 1 1] print(A.transpose()) # [1,1,1] 無法使用 transpose 把一個橫向的數列變成縱向的數列 # 要做到這件事,要使用 new axis 增加維度 # 在 row 上面增加維度 print(A[np.newaxis,:].shape) # (1, 3) print(A[np.newaxis,:]) # [[1 1 1]] # 在 col 上面增加維度 print(A[:,np.newaxis].shape) # (3, 1) print(A[:,np.newaxis]) ''' [[1] [1] [1]] ''' # 應用:把兩個橫向的陣列,轉為縱向的,然後合併 A = np.array([1,1,1])[:,np.newaxis] # 橫向陣列 轉 縱向矩陣 B = np.array([2,2,2])[:,np.newaxis] # 橫向陣列 轉 縱向矩陣 C = np.vstack((A,B)) # 垂直合併 D = np.hstack((A,B)) # 水平合併 print(A.shape) # (3,1) print(B.shape) # (3,1) print(C.shape) # (6,1) print(C) ''' [[1] [1] [1] [2] [2] [2]] ''' print(D.shape) # (3,2) print(D) ''' [[1 2] [1 2] [1 2]] ''' ``` ***補充說明:陣列與矩陣轉換*** ```python=1 # coding=utf-8 import numpy as np A = np.array([1,1,1]) B = np.array([2,2,2]) print(A.shape) # (3,) print(A) # [1 1 1] print(B.shape) # (3,) print(B) # [2 2 2] A = np.array([1,1,1])[np.newaxis,:] # 橫向陣列 轉 橫向矩陣 B = np.array([2,2,2])[np.newaxis,:] # 橫向陣列 轉 橫向矩陣 print(A.shape) # (1,3) print(A) # [[1 1 1]] print(B.shape) # (1,3) print(B) # [[2 2 2]] ``` - **使用 concatenate 做多個 Array 合併** ```python=1 # coding=utf-8 import numpy as np A = np.array([1,1,1]) B = np.array([2,2,2]) # 使用 concatenate 進行合併 E = np.concatenate((A,B,B,A)) print(E) # [1 1 1 2 2 2 2 2 2 1 1 1] F = np.concatenate((A,B,B,A), axis=0) # 合併 print(F) # [1 1 1 2 2 2 2 2 2 1 1 1] ``` ## numpy array 分割 - **使用 split 做等量分割** ```python=1 #coding=utf-8 import numpy as np A = np.arange(12).reshape(3,4) print(A) ''' [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] ''' # 縱向分割 split(輸入矩陣, 要分割的數量, axis=1 就是對 col 方向的分割) print(np.split(A, 2, axis=1)) ''' [array([[0, 1], [4, 5], [8, 9]]), array([[ 2, 3], [ 6, 7], [10, 11]])] ''' # 橫向分割 split(輸入矩陣, 要分割的數量, axis=0 就是 row 方向的分割) print(np.split(A, 3, axis=0)) ''' [array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]])] ''' ``` - **使用 array_split 做不等量分割** ```python=1 #coding=utf-8 import numpy as np A = np.arange(12).reshape(3,4) print(A) ''' [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] ''' # p.s. split 分割只能分成等量分割,例如 3x4 col 方向的只能分成 2份 4份 不可分成 3份 # 所以下面這行會報錯 print(np.split(A, 3, axis=1)) # ValueError: array split does not result in an equal division # 如果要做不等量的分割的話要使用 array_split() print(np.array_split(A, 3, axis=1)) ''' col 分成了 2,1,1 這樣的份數 [array([[0, 1], [4, 5], [8, 9]]), array([[ 2], [ 6], [10]]), array([[ 3], [ 7], [11]])] ''' ``` - **使用 vsplit 與 hsplit 分割** ```python=1 #coding=utf-8 import numpy as np A = np.arange(12).reshape(3,4) print(A) ''' [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] ''' # 使用 verticle split (vsplit) 來做 axis=0 方向分割 print(np.vsplit(A, 3)) ''' [array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]])] ''' # 使用 horizontal split (hsplit) 來做 axis=1 方向分割 print(np.hsplit(A, 2)) ''' [array([[0, 1], [4, 5], [8, 9]]), array([[ 2, 3], [ 6, 7], [10, 11]])] ''' ``` ## numpy array 複製 copy 與 deep copy - **copy by assignment** ```python=1 #coding=utf-8 import numpy as np a = np.arange(4) print(a) # [0 1 2 3] b = a c = a d = b a[0] = 11 # 修改 a print(b) # [11 1 2 3] 也會動到 b print(b is a) # True 因為 b = a 時 b 就是 a print(c) # [11 1 2 3] 同理 c 也會變 print(d) # [11 1 2 3] 因為 d 就是 b, b 就是 a ,所以改 a 也會動到 d d[1:3]=[22,33] # 所以修改 d 也會動到其他三個變數 print(a) # [11 22 33 3] print(b) # [11 22 33 3] print(c) # [11 22 33 3] ``` - **deep copy** ```python=1 #coding=utf-8 import numpy as np # 如果只想修改 a 但是不想要動用到其他人,那就要使用所謂的 deep copy a = np.arange(4) b = a.copy() # deep copy print(a) # [0 1 2 3] print(b) # [0 1 2 3] a[3] = 44 print(a) # [ 0 1 2 44] print(b) # [0 1 2 3] ```

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully