AIOT
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Owners
        • Signed-in users
        • Everyone
        Owners Signed-in users Everyone
      • Write
        • Owners
        • Signed-in users
        • Everyone
        Owners Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Help
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Owners
  • Owners
  • Signed-in users
  • Everyone
Owners Signed-in users Everyone
Write
Owners
  • Owners
  • Signed-in users
  • Everyone
Owners Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# BinaryConnect: Training Deep Neural Networks with binary weights during propagations 作者:Matthieu Courbariaux, Yoshua Bengio, Jean-Pierre David 論文連結:https://arxiv.org/abs/1511.00363 整理by: [chewei](https://hackmd.io/@WTuIbJANSB26DiAX-WL4Sg) - - - - - ## 0. 論文貢獻 本篇論文提出了BinaryConnect的 ***"方法"*** 來實現把在訓練中forward跟back propagations的權重以**二元化**後**累加**(accumulated)的方式代替**乘法**運算(multiply-accumulate operations) $\Rightarrow$大量降低耗電(power-hungry)及空間(space)使用率 ## 1. 本篇論文的研究基石 ***Noisy weights:*** 指的是權重參數加入隨機性的情況,這種隨機性可能來自於訓練數據的內在噪聲、初始化過程、或是訓練過程中使用的某些正則化技術。這種噪聲有時可以幫助模型避免過度適應訓練數據(overfitting)。 在Stochastic Gradient Descent (SGD)中,***保持期望值的高精度比高精度來的重要***,也就是只要權重的***期望值***相同,加入Noisy weights是可以有效防止overfitting發生的。 回到論文主題Binarize來看,其實這種二元化就是將權重離散化,跟Noisy weights概念相似,因此也是可以達到防止***overfitting且提高效率***的效果。 ## 2. Deterministic vs stochastic binarization >此部份與下一篇BNNs相同,在BNNs中將會探討何者較適合被用在架構內 ***Deterministic function(AKA Sign function):*** $$x^b = \text{Sign}(x) = \begin{cases} +1 & \text{if } x \geq 0, \\ -1 & \text{otherwise}, \end{cases} $$ $x^b$ 是binarized後的變數 x 是轉換前的真實變數 ***Stochastic function:*** $$x^b = \begin{cases} +1 & with \, probability \,\, p=\sigma(x),\\ -1 & with \, probability \,\, 1-p, \end{cases} $$ ***$\sigma$是"hard sigmoid" 函式:*** $$ \sigma(x)=\text{clip}( \frac{x+1}{2} \quad,0,1)= \text{max}(0,\text{min}(1,\frac{x+1}{2})) $$ ## 3. Propagations vs updates > 探討在"參數傳遞"和"SGD更新參數"時是否皆有必要進行離散化(二元化)。 **前向傳播(forward-propagation):** 給定DNN的輸入後,一層一層**計算單元**(unit)**的激活函數**(activations)直到最後一層。 **後向傳播(back-propagation):** 給定DNN的輸出後,一層一層往前**計算梯度**(gradient)直到第一層。 **參數更新(parameter update):** 在每一層計算完梯度後,會以剛才1.**計算好的梯度**2.**先前的參數值**用來**更新參數**(update parameter)。 $\rightarrow$ 作者根據以下演算法各步驟拆分開來看,發現在**更新參數**(parameter update)時,SGD所需的較高的精度來進行細微的改變(這些微小的改變是通過梯度下降獲得的),因此在這個部份的參數**不會被Binarize**。 $\rightarrow$ 只有在**前向傳播(forward-propagation)**,**後向傳播(back-propagation)** 時的參數會做**Binarize** <details> <summary>SGD with BinaryConnect演算法</summary> **Requitre:** 1. minibatch 的輸入及目標 2. 前一個參數$w_{t-1}$(weights) 3. $b_{t-1}$(biases) 4. 學習率$\eta$ **Ensure:** 更新後參數$w_t$和$b_t$ 1.**前向傳播(forward-propagation):** $$ \begin{align*} & w_b\leftarrow\text{binarize}(w_{t-1}) \\ & \text{ For } k=1 \text{ to } \text{ L ,}\text{ compute } a_k \text{ knowing } a_{k-1},w_b \text{ and } B_{t-1} \end{align*} $$ 2.**後向傳播(back-propagation):** $$ \begin{align*} & \text{Initialize output layer's activations gradient}\frac{\partial C}{\partial a_L} \\ & \text{For k=L to 2 ,compute}\frac{\partial C}{\partial a_{k-1}}\text{ Knowing }\frac{\partial C}{\partial a_k}\text{ and }w_b \end{align*} $$ 3.**參數更新(parameter update):** $$ \begin{align*} & \text{Compute}\frac{\partial C}{\partial w_b}\text{ and }\frac{\partial C}{db_{t-1}}\text{Knowing}\frac{\partial C}{\partial a_k}\text{and}a_{k-1} \\ & w_t\leftarrow\text{clip}(w_{t-1}-\eta\frac{\partial C}{\partial w_b}) \\ & b_t\leftarrow b_{t-1}-\eta\frac{\partial C}{\partial b_{t-1}} \end{align*} $$ </details> ## 4.Clipping 在每次**參數更新後**對其做clipping達到正則化效果,並把參數限制在+/-1,其作法如第2.點公式。 ![image](https://hackmd.io/_uploads/H1a-AcHT6.png) ## 5.實驗 1.以Deterministic function的方式做二元化,並且在inference時使用**二元化後的參數進行檢測** 。 2.以Stochastic function的方式做二元化,但此二元化計算完後會將權重**轉換回real-valued的權重進行檢測** 。 結果如下圖: ![image](https://hackmd.io/_uploads/r1ch9iHTp.png) $$\text{Error Rate}$$ > 二元化後的準確率不減反增,作者認為這是因為二元化可視為一種Dropout ## Reference Dropout DropConnect

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully