DaeSick
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# 실전 줄리아 첫걸음 연습문제 ## 알고리즘 ### 015. n번째로 큰 인덱스 ☆ `argmax`는 최대값의 위치를, `argmin`는 최소값의 위치를 리턴하는 함수다. 이와 유사하게, 부분순서배열 `A`에서 `n`번째로 큰 원소의 인덱스를 리턴하는 `argnth(n, A)`를 작성하라. #### 검증예시 ```julia julia> X = [0, -1, 7, 3, 9, 2, 11]; julia> argnth(2, X) 5 julia> argnth(3, X) 3 ``` #### 답안예시 ```julia argnth(n, A) = sortperm(A, rev = true)[n] ``` <!-- ### 001. 기수 정렬 ☆☆ #### 답안예시 ```julia function row_sort(M, i) m = M[i,:] idx = vcat([findall(m .== "$digit") for digit in 0:9]...) return M[:, idx] end function radix_sort(arry) k = Int64(maximum(ceil.(log10.(arry)))) M = stack(split.(lpad.(arry, k, '0'), "")) for i in k:(-1):1 M = row_sort(M, i) end return parse.(Int64, reduce.(*, eachcol(M))) end arry = [190, 812, 9, 77, 21, 413] radix_sort(arry) ``` --> ### 002. 가중치 샘플링 ☆ $\mathbb{R}_{-}^{c} = \left\{ r \in \mathbb{R} : r \ge 0 \right\}$ 이라고 하자. 임의의 $d$-튜플 $\mathbf{I}$ 와 영벡터가 아닌 벡터 $\mathbf{w} \in \left( \mathbb{R}_{-}^{c} \right)^{d}$ 를 입력받아서 $\frac{\left( \mathbf{w} \right)_{k}}{\sum_{k} \left( \mathbf{w} \right)_{k}}$ 의 확률로 $\mathbf{I}$ 의 $k$번째 원소 $\left( \mathbf{I} \right)_{k}$ 을 리턴하는 함수 `randw(item, weight)`를 작성하라. #### 검증예시 ```julia julia> randw(['a', 'b', 'c'], [1,2]) ERROR: AssertionError: length mismatch julia> randw(['a', 'b', 'c'], [0,0,0]) ERROR: AssertionError: all weights are zero julia> randw(['a', 'b', 'c'], [1,2,-1]) ERROR: AssertionError: there is a negative weight julia> randw(['a', 'b', 'c'], [1,2,3]) 'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase) julia> abc = [randw(['a', 'b', 'c'], [1,2,3]) for _ in 1:6000]; julia> count.([abc .== 'a', abc .== 'b', abc .== 'c']) 3-element Vector{Int64}: 1029 1980 2991 ``` <!-- #### 답안예시 ```julia function randw(item, weight) @assert length(item) == length(weight) "length mismatch" @assert any(weight .> 0) "all weights are zero" @assert all(weight .≥ 0) "there is a negative weight" Σ = sum(weight) if !isone(Σ) weight = weight ./ Σ end return item[findfirst(rand() .≤ cumsum(weight))] end randw(['a', 'b', 'c'], [1,2]) randw(['a', 'b', 'c'], [0,0,0]) randw(['a', 'b', 'c'], [1,2,-1]) randw(['a', 'b', 'c'], [1,2,3]) abc = [randw(['a', 'b', 'c'], [1,2,3]) for _ in 1:6000] count.([abc .== 'a', abc .== 'b', abc .== 'c']) ``` --> ### 003. 비복원 샘플링 ☆☆ **선수문제:** 002. 가중치 샘플링 `randw` 함수를 사용해서 가중치 샘플링을 `n`번 반복하되, 비복원 샘플링(sample without replacement)을 할 수 있는 함수 `randw(item, weight, n; replace = true)`를 재정의하라. `replace` 키워드의 디폴트는 `true`로 주어지며, `false`일 때 비복원 샘플링이 수행된다. #### 검증예시 ```julia julia> randw(1:10, 1:10, 5) 5-element Vector{Any}: 9 7 6 6 6 julia> randw(1:10, 1:10, 5, replace = false) 5-element Vector{Int64}: 6 4 3 10 8 ``` #### 답안예시 다음은 샘플 벡터가 제약조건을 만족시키지 못하면 폐기하고 원하는 결과가 나올때까지 반복하는 방법이다. ```julia function randw(item, weight, n; replace = true) @assert n ≤ length(item) "n = $n is larger than the length of item = $(length(item))" while true sample = [randw(item, weight) for _ in 1:n] if allunique(sample) || replace return sample end end end ``` 다음은 샘플된 아이템을 하나씩 금지 시켜가며 가중치를 업데이트하는 방법이다. 이 방법의 결과로 얻는 샘플 벡터의 원소들이 적법한 순서를 가지는지 논하라. ```julia function randw(item, weight, n; replace = true) @assert n ≤ length(item) "n = $n is larger than the length of item = $(length(item))" N = length(item) if replace sample = [randw(item, weight) for _ in 1:n] else weight = deepcopy(collect(weight)) sample = [] for _ in 1:n k = randw(1:N, weight) weight[k] = 0 push!(sample, item[k]) end end return sample # OK with this order? end ``` ## 네트워크 ### 012. 길버트 모델 ☆ [길버트 모델](https://freshrimpsushi.github.io/posts/2118)을 통해 [에르되시-레니 그래프](https://freshrimpsushi.github.io/posts/2116)와 유사한 결과를 얻을 수 있다. 노드의 수 $n \in \mathbb{N}$ 과 확률 $p \in [0,1]$ 을 입력받아 길버트 모델에 따라 랜덤 그래프를 리턴하는 함수 `gilbert(n, p)`를 작성하라. ### 013. 유클리드 그래프 ☆☆ 노드의 수 $n \in \mathbb{N}$ 과 컷오프 $\delta \ge 0$ 를 입력받아 [유클리드 그래프](https://freshrimpsushi.github.io/posts/2396)을 리턴하는 함수 `euclidean(n, δ)`를 작성하라. ### 004. 바라바시-알버트 모델 ☆☆☆ **선수문제:** 003. 비복원 샘플링 최종 노드의 수 $N \in \mathbb{N}$ 과 링크 파라미터 $m \in \mathbb{N}$ 를 입력받아 [바라바시-알버트 모델](https://freshrimpsushi.github.io/posts/2187)을 통해 [스케일 프리 네트워크](https://freshrimpsushi.github.io/posts/2183)를 리턴하는 함수 `barabasi_albert(N, m = 1)`를 작성하라. #### 검증예시 ```julia julia> ba = barabasi_albert(1000, 3) 1000-element Vector{Vector{Int64}}: [2, 3, 4, 5, 6, 7, 9, 11, 15, 18 … 826, 860, 864, 872, 908, 913, 929, 942, 960, 961] [1, 3, 4, 5, 9, 17, 18, 38, 46, 55 … 704, 710, 720, 829, 837, 846, 922, 962, 971, 999] [1, 2, 4, 5, 6, 7, 8, 12, 14, 22 … 389, 402, 503, 551, 560, 565, 617, 735, 833, 897] [2, 3, 1, 8, 10, 11, 14, 19, 20, 22 … 726, 779, 797, 820, 866, 894, 900, 926, 937, 984] [1, 3, 2, 6, 7, 8, 9, 10, 13, 15 … 736, 762, 773, 848, 857, 922, 923, 926, 928, 979] ⋮ [53, 739, 342] [83, 142, 87] [447, 9, 19] [495, 2, 236] [530, 190, 359] julia> degree = length.(ba) 1000-element Vector{Int64}: 96 42 36 63 72 ⋮ 3 3 3 3 3 julia> histogram(degree, xscale = :log10, yscale = :log10, xticks = 10.0 .^(-0:0.5:2), xlims = extrema(degree)) ``` ![image](https://hackmd.io/_uploads/r1ACEJqSa.png) #### 답안예시 ```julia function randw(item, weight) Σ = sum(weight) if !isone(Σ) weight = weight ./ Σ end return item[findfirst(rand() .≤ cumsum(weight))] end function randw(item, weight, n; replace = true) while true sample = [randw(item, weight) for _ in 1:n] if (length(unique(sample)) == n) || replace return sample end end end function barabasi_albert(N, m = 1) G = [setdiff(1:m, k) for k in 1:m] for new in (m+1):N idxs = randw(1:(new-1), length.(G), m, replace = false) push!(G, idxs) push!.(G[idxs], new) end return G end ba = barabasi_albert(1000, 3) degree = length.(ba) using Plots histogram(degree) histogram(degree, xscale = :log10, yscale = :log10, xticks = 10.0 .^(-0:0.5:2), xlims = extrema(degree)) ``` ## 선형대수 ### 007. 라플라스 전개 ☆ 정사각행렬 $A = \left( a_{ij} \right) \in \mathbb{R}^{n \times n}$ 에 대해 $i$번째 행과 $j$번째 열을 제거한 행렬의 행렬식<sup>determinant</sup> $M_{ij}$ 를 소행렬식<sup>minor</sup>, $C_{ij} := (-1)^{i+j}M_{ij}$ 를 코팩터<sup>cofactor</sup>라 한다. $$ \det A = \sum_{j=1}^{n} a_{ij} C_{ij} \qquad \text{, for fixed row } i $$ 위의 공식을 라플라스 전개<sup>Laplace expansion</sup>라 한다. 정사각행렬을 입력받아 라플라스 전개를 리턴하는 함수 `laplace(A)`를 작성하라. #### 검증예시 ```julia julia> B = [2 3; 4 6] 2×2 Matrix{Int64}: 2 3 4 6 julia> laplace(B) 0 julia> C = [7 1; 9 3] 2×2 Matrix{Int64}: 7 1 9 3 julia> laplace(C) 12 julia> M = rand(3,3) 3×3 Matrix{Float64}: 0.478437 0.779194 0.334746 0.342975 0.867767 0.0211038 0.733843 0.97752 0.331435 julia> laplace(M) -0.04971335247679029 julia> using LinearAlgebra julia> det(M) -0.049713352476790304 julia> abs(det(M) - laplace(M)) 1.3877787807814457e-17 ``` <!-- #### 답안예시 ```julia function laplace(A::AbstractMatrix) n = size(A, 1) @assert n == size(A, 2) "matrix $A is not square" if n |> isone aijCij = A else aijCij = [A[1,j] * (-(-1)^j) * laplace(A[2:end, setdiff(1:n, j)]) for j in 1:n] end return sum(aijCij) end B = [2 3; 4 6] laplace(B) C = [7 1; 9 3] laplace(C) M = rand(3,3) laplace(M) using LinearAlgebra det(M) abs(det(M) - laplace(M)) ``` --> ### 008. 한켈 매트릭스 ☆ $$ H = \begin{bmatrix} h_{11} & h_{12} & h_{13} & \cdots & h_{1n} \\\ h_{21} & h_{22} & h_{23} & \cdots & h_{2n} \\\ h_{31} & h_{32} & h_{33} & \cdots & h_{3n} \\\ \vdots & \vdots & \vdots & \ddots & \vdots \\\ h_{m1} & h_{m2} & h_{m3} & \cdots & h_{mn} \end{bmatrix} $$ 주어진 행렬 $H = \left( h_{ij} \right) \in \mathbb{R}^{m \times n}$ 가 모든 $k = 2 , 3 , \cdots , m+n$ 에 대해 다음을 만족하면 **한켈 행렬**<sup>Hankel Matrix</sup>라 한다. $$ i_{1} + j_{1} = k = i_{2} + j_{2} \implies h_{i_{1} j_{1}} = h_{i_{2} j_{2}} $$ 다시 말해, 한켈 행렬이란 다음과 같이 반대각선의 성분이 모두 같은 행렬이다. $$ H = \begin{bmatrix} h_{2} & h_{3} & h_{4} & \cdots & h_{1+n} \\\ h_{3} & h_{4} & h_{5} & \cdots & h_{2+n} \\\ h_{4} & h_{5} & h_{6} & \cdots & h_{3+n} \\\ \vdots & \vdots & \vdots & \ddots & \vdots \\\ h_{m+1} & h_{m+2} & h_{m+3} & \cdots & h_{m+n} \end{bmatrix} $$ 벡터 $\left( h_{2}, \cdots , h_{m+n} \right)$ 과 두 자연수 $m, n$ 을 입력받아 위와 같은 한켈 행렬 $H \in \mathbb{R}^{m \times n}$ 을 리턴하는 함수 `hankelizer(vec, m, n)`을 작성하라. #### 검증예시 ``` julia> elements = [8,2,0,6,5,1,5,4,0,1]; julia> hankelizer(elements, 3, 8) 3×8 Matrix{Int64}: 8 2 0 6 5 1 5 4 2 0 6 5 1 5 4 0 0 6 5 1 5 4 0 1 julia> hankelizer(elements, 2, 9) 2×9 Matrix{Int64}: 8 2 0 6 5 1 5 4 0 2 0 6 5 1 5 4 0 1 ``` <!-- #### 답변예시 ```julia function hankelizer(vec) @assert length(vec) % 2 == 1 "vector must have odd length" m = (length(vec) ÷ 2) + 1 H = zeros(eltype(vec), m, m) for i ∈ 1:m, j ∈ 1:m H[i,j] = vec[i+j-1] end return H end elements = [8,2,0,6,5,1,5,4,0] hankelizer(elements) function hankelizer(vec, m, n) @assert length(vec) == (m+n-1) "wrong dimensions" H = zeros(eltype(vec), m, n) for i ∈ 1:m, j ∈ 1:n H[i,j] = vec[i+j-1] end return H end elements = [8,2,0,6,5,1,5,4,0,1]; hankelizer(elements, 3, 8) hankelizer(elements, 2, 9) ``` --> ### 011. 역행렬 ☆☆ 주어진 행렬 $M \in \mathbb{R}^{n \times n}$ 에 대해 가우스 소거법을 통해 역행렬 $M^{-1}$ 을 리턴하는 함수 `gauss(M)` 을 작성하라. ### 014. 특이값 분해 ☆☆ 행렬 $A \in \mathbb{R}^{n \times n}$ 에 대해 $A^{T} A$ 가 $\operatorname{rank} A = r$ 이라 하자. $A$ 의 고유값이 $\lambda_{1} \ge \cdots \lambda_{n} \ge 0$ 과 같이 정렬 되어 있다고 하고, 각자에 대응되는 고유벡터를 $\mathbf{v}_{1} , \cdots , \mathbf{v}_{n}$ 이라고 할 때, 다음과 같은 계산을 할 수 있다. $$ \begin{align} \sigma_{j} :=& \sqrt{\lambda_{j}} & , j = 1 , \cdots , n \\ \mathbf{u}_{j} :=& \frac{1}{\sigma_{j}} A \mathbf{v}_{j} & , j \in 1 , \cdots , r \end{align} $$ 두 직사각행렬 $\hat{U} := \left( \mathbf{u}_{1}^{T} , \cdots , \mathbf{u}_{r}^{T} \right) \in \mathbb{R}^{m \times r}$ 과 $\hat{V} := \left( \mathbf{v}_{1}^{T} , \cdots , \mathbf{v}_{r}^{T} \right) \in \mathbb{R}^{n \times r}$ 과 대각행렬 $\hat{\Sigma} := \operatorname{diag} \left( \sigma_{1} , \cdots , \sigma_{r} \right) \in \mathbb{R}^{r \times r}$ 에 대해 $$ A = \hat{U} \hat{\Sigma} \hat{V}^{T} $$ 가 성립하고, 이를 축소 특이값 분해<sup>reduced singular value decomposition</sup>이라 한다. $A$ 의 모든 고유값과 고유벡터를 알고 있다고 가정할 수 있을 때, $A$ 의 특이값 분해를 리턴하는 함수 `mySVD(A)`를 작성하라. - 문제의 풀이와 검증을 위해서는 `LinearAlgebra.jl` 라이브러리의 `rank`, `eigen`, `diagm`, `svd` 와 같은 함수를 사용해도 좋다. #### 검증예시 ```julia julia> A = [1 2 3 4 5 6 7 8 7 4 2 1]; julia> myU, myΣ, myVt = mySVD(A); julia> myU*myΣ*myVt' 4×3 Matrix{Float64}: 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 7.0 4.0 2.0 1.0 julia> B = [1 2 3 4 5 2 4 6 8 10 7 8 7 6 5] 3×5 Matrix{Int64}: 1 2 3 4 5 2 4 6 8 10 7 8 7 6 5 julia> myU, myΣ, myVt = mySVD(B); julia> myU*myΣ*myVt' 3×5 Matrix{Float64}: 1.0 2.0 3.0 4.0 5.0 2.0 4.0 6.0 8.0 10.0 7.0 8.0 7.0 6.0 5.0 ``` SVD가 원래의 폼으로 되돌아 오면 분해 자체는 성공한 것이다. 표준 라이브러리인 `LinearAlgebra.jl`과 비교하면 다음과 같다. 차원에는 차이가 있으나 근본적인 수치들, 특히 고유값의 경우 정확히 같음을 확인하라. ```julia julia> myU 3×2 Matrix{Float64}: 0.295963 -0.33527 0.591925 -0.670541 -0.749687 -0.661792 julia> U 3×3 Matrix{Float64}: -0.33527 -0.295963 -0.894427 -0.670541 -0.591925 0.447214 -0.661792 0.749687 1.66533e-16 julia> myΣ 2×2 Matrix{Float64}: 6.27906 0.0 0.0 21.4143 julia> Σ 3-element Vector{Float64}: 21.414326423487807 6.2790623367117195 0.0 julia> myVt 5×2 Matrix{Float64}: -0.600089 -0.294611 -0.48381 -0.403797 -0.128741 -0.451175 0.226328 -0.498552 0.581397 -0.54593 julia> Vt 5×3 adjoint(::Matrix{Float64}) with eltype Float64: -0.294611 0.600089 -0.594015 -0.403797 0.48381 0.769135 -0.451175 0.128741 -0.213693 -0.498552 -0.226328 -0.0979743 -0.54593 -0.581397 0.0177441 ``` #### 답안예시 ```julia using LinearAlgebra function mySVD(A::AbstractMatrix) r = rank(A) λ, V = eigen(A'A) # we can assume eigenpairs are given λ = λ[ (end-r+1):end] V = V[:,(end-r+1):end] Σ = diagm(sqrt.(λ)) U = (A * V) / Σ return U, Σ, V end A = [1 2 3 4 5 6 7 8 7 4 2 1]; myU, myΣ, myVt = mySVD(A); myU*myΣ*myVt' B = [1 2 3 4 5 2 4 6 8 10 7 8 7 6 5] myU, myΣ, myVt = mySVD(B); myU*myΣ*myVt' U, Σ, Vt = svd(B); U*diagm(Σ)*Vt' myU U myΣ Σ myVt Vt ``` ## 해석학 ### 009. 극값 ☆ 주어진 시퀀스 $x_{t}$ 에 대해 $x_{t} \ge x_{t-1}, x_{t+1}$ 혹은 $x_{t} \le x_{t-1}, x_{t+1}$ 를 만족하면 $x_{t}$ 를 **극값**<sup>extreme value</sup>이라 정의한다. 배열 `arr`$=x_{t}$ 를 입력받아 모든 극값의 위치를 리턴하는 함수 `argext(arr)` 를 작성하라. <!-- #### 답안 예시 ```julia function argext(arr) idxmin = (circshift(arr, 1) .> arr) .&& (circshift(arr, -1) .> arr) idxmax = (circshift(arr, 1) .< arr) .&& (circshift(arr, -1) .< arr) return idxmin .|| idxmax end ``` --> ### 010. 바이섹션 메소드 ☆ 주어진 함수 $f : \mathbb{R} \to \mathbb{R}$ 가 $f(a) f(b) < 0$ 를 만족한다고 하자. [바이섹션 메소드](https://freshrimpsushi.github.io/posts/676)를 구현한 함수 `bisect(f,a,b;atol=eps())` 를 작성하라. `atol`은 절대허용오차(absolute tolerance)를 의미한다. #### 검증예시 ```julia julia> bisect(x -> x^3 + 8, -7, 7) -1.9999999850988388 julia> bisect(x -> sin(x), 3, 4) 3.141592025756836 ``` <!-- #### 답안예시 ```julia function bisect(f,a,b; atol = 10^(-6)) @assert f(a)*f(b) < 0 "f(a) and f(b) have same sign" c = (a+b)/2 while abs(f(c)) > atol if f(b)*f(c) < 0 a = c else b = c end c = (a+b)/2 end return c end bisect(x -> x^3 + 8, -7, 7) bisect(x -> sin(x), 3, 4) ``` --> ## 다이내믹스 ### 005. 로지스틱 맵의 트래젝터리 ☆ $$ x_{t+1} = f_{r} \left( x_{t} \right) = r x_{t} \left( 1 - x_{t} \right) $$ 위와 같이 로지스틱 패밀리<sup>logistic family</sup>를 통해 정의된 다이내믹 시스템이 주어져 있다고 하자. 1. 파라미터 $r$ 과 $x_{t}$ 에 대해 $x_{t+1}$ 을 리턴하는 함수 `logistic(r, x)`을 작성하라. 2. 맵 $f_{r}$ 와 파라미터 $r$, 초기값 $x_{0}$, 반복횟수 $n$을 입력 받아 오빗<sup>orbit</sup> $\left\{ x_{t} \right\}_{t=0}^{n}$ 을 리턴하는 함수 `iter(f, p, x0, n)`을 작성하라. #### 검증예시 ```julia julia> logistic(4, 0.5) 1.0 julia> traj = iter(logistic, 3, 0.5, 100); julia> using Plots julia> timeevolution = plot(traj, color = :black, legend = :none) ``` ![](https://hackmd.io/_uploads/HyKlHXU-T.png) <!-- #### 답안예시 ```julia function logistic(r, x) return r * x * (1 - x) end logistic(4, 0.5) function iter(f, p, x0, n) x = [x0] for t in 1:n push!(x, f(p, x[end])) end return x end traj = iter(logistic, 3, 0.5, 100) using Plots plot(traj) ``` --> ### 006. 로지스틱 맵의 바이퍼케이션 ☆☆ <!-- #### 답안예시 function bifurcation(h) xaxis_ = [] yaxis_ = [] for r ∈ 1:h:4 preiterated = iter(logistic, r, 0.5, 200)[101:end] xaxis_ = [xaxis_; fill(r, length(preiterated))] yaxis_ = [yaxis_; preiterated] end return xaxis_, yaxis_ end @time xaxis, yaxis = bifurcation(0.01) diagram = scatter(xaxis, yaxis, markersize = 0.1, markeralpha = 0.5, legend = false, xlims = (1, 4), ylims = (0, 1)) @time xaxis, yaxis = bifurcation(0.001) diagram = scatter(xaxis, yaxis, markersize = 0.1, markeralpha = 0.5, legend = false, xlims = (1, 4), ylims = (0, 1)); png(diagram, "bifurcation.png") ``` --> ![](https://hackmd.io/_uploads/ryBWLc-6h.png)

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully