Kao WeiTse
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # Pytorch入門 ![](https://i.imgur.com/SUpOPF8.jpg) ## Pytorch環境搭建 使用SSH連至server `$ ssh kaowt@140.114.95.170 -p 23` 用你的帳號連線至server `$ git clone https://github.com/CCLoLab/pytorch_tutorial` 找個好地方把範例程式碼clone下來~ `$ python3 -m venv env` 用virtual environments搭建環境,避免你安裝的環境跟其他人打架.env為自訂路徑.venv的文件看[這裡](https://docs.python.org/3/library/venv.html), 沒有venv要用pip先安裝. `$ source env/bin/activate` 掛載虛擬環境 要開始來安裝pytorch了! 先檢查你的GPU型號和驅動版本(沒有驅動要先安裝! [安裝nvidia驅動](https://linuxconfig.org/how-to-install-the-nvidia-drivers-on-ubuntu-20-04-focal-fossa-linux)) `$ nvidia-smi` ![](https://i.imgur.com/Rjlc3yH.png) 要注意顯卡型號, driver版本及CUDA版本的相容性, 這是容易遇到的坑... 去[NVIDIA官網](https://docs.nvidia.com/deploy/cuda-compatibility/index.html)查看相容性. 去pytorch官網選擇對應的CUDA版本進行安裝, 這裡我們用pip安裝. https://pytorch.org/ ![](https://i.imgur.com/NhxX0De.png) `$ pip install torch torchvision` ## MNIST數字辨識 ![](https://i.imgur.com/QcqpoBY.png) (來源:[ml4](https://ml4a.github.io/ml4a/looking_inside_neural_nets/)) ```python= # -*- coding: utf-8 -*- import torch import torch.nn as nn import torch.optim as optim import torch.utils.data as dset from torchvision import datasets, transforms ``` 匯入pytorch套件. ```python=+ # GPU device = 'cuda:0' if torch.cuda.is_available() else 'cpu' print('GPU State:', device) ``` 檢查GPU可用. ```python=+ # Transform transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)),] ) ``` pytorch的transform模組將圖片轉換. `transforms.ToTensor()`將圖片轉為torch的Tensor. `transforms.Normalize()`將[0,255]的灰階正規化為[0,1]的範圍 ```python=+ # Data trainSet = datasets.MNIST(root='MNIST', download=True, train=True, transform=transform) testSet = datasets.MNIST(root='MNIST', download=True, train=False, transform=transform) trainLoader = dset.DataLoader(trainSet, batch_size=64, shuffle=True) testLoader = dset.DataLoader(testSet, batch_size=64, shuffle=False) ``` 直接從pytorch匯入訓練用的資料,豪方便~ ```python=+ # Model class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.main = nn.Sequential( nn.Linear(in_features=784, out_features=128), nn.ReLU(), nn.Linear(in_features=128, out_features=64), nn.ReLU(), nn.Linear(in_features=64, out_features=10), nn.LogSoftmax(dim=1) ) def forward(self, input): return self.main(input) net = Net().to(device) print(net) ``` 創建模型.這裡使用全連接層. ```python=+ # Parameters epochs = 3 lr = 0.002 criterion = nn.NLLLoss() optimizer = optim.SGD(net.parameters(), lr=0.002, momentum=0.9) ``` epochs: 訓練的迭代次數,完整通過一次訓練集的樣本. lr: learning rate, 反向傳播的學習率. criterion: 我們使用的loss funtion. optimizer: 優化器, 這裡使用pytorch內建的SGD(stochastic gradient descent, 隨機梯度下降) ```python=+ # Train for epoch in range(epochs): running_loss = 0.0 for times, data in enumerate(trainLoader): inputs, labels = data[0].to(device), data[1].to(device) inputs = inputs.view(inputs.shape[0], -1) # Zero the parameter gradients optimizer.zero_grad() # Foward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # Print statistics running_loss += loss.item() if times % 100 == 99 or times+1 == len(trainLoader): print('[%d/%d, %d/%d] loss: %.3f' % (epoch+1, epochs, times+1, len(trainLoader), running_loss/2000)) print('Training Finished.') ``` 訓練過程 ```python=+ # Test correct = 0 total = 0 with torch.no_grad(): for data in testLoader: inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) inputs = inputs.view(inputs.shape[0], -1) outputs = net(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100*correct / total)) class_correct = [0 for i in range(10)] class_total = [0 for i in range(10)] with torch.no_grad(): for data in testLoader: inputs, labels = data[0].to(device), data[1].to(device) inputs = inputs.view(inputs.shape[0], -1) outputs = net(inputs) _, predicted = torch.max(outputs, 1) c = (predicted == labels).squeeze() for i in range(10): label = labels[i] class_correct[label] += c[i].item() class_total[label] += 1 print(class_correct) print(class_total) for i in range(10): print('Accuracy of %d: %3f' % (i, (class_correct[i]/class_total[i]))) ``` 測試 ## CIFAR-10 [官方教程](https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar10-tutorial-py) What is [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html)? ![](https://i.imgur.com/BFksffY.png) ```python= # -*- coding: utf-8 -*- import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import torchvision.transforms as transforms # GPU device = 'cuda:0' if torch.cuda.is_available() else 'cpu' print('GPU state:', device) # Cifar-10 data transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # Data trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) trainLoader = torch.utils.data.DataLoader(trainset, batch_size=8, shuffle=True, num_workers=2) testLoader = torch.utils.data.DataLoader(testset, batch_size=8, shuffle=False, num_workers=2) # Data classes classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # Model structure class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(16*5*5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16*5*5) #-1 表示自動計算有多少neuron x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net().to(device) print(net) # Parameters criterion = nn.CrossEntropyLoss() lr = 0.001 epochs = 10 optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9) # Train for epoch in range(epochs): running_loss = 0.0 for times, data in enumerate(trainLoader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) # Zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if times % 100 == 99 or times+1 == len(trainLoader): print('[%d/%d, %d/%d] loss: %.3f' % (epoch+1, epochs, times+1, len(trainLoader), running_loss/2000)) print('Finished Training') # Test correct = 0 total = 0 with torch.no_grad(): for data in testLoader: inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) outputs = net(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test inputs: %d %%' % (100 * correct / total)) class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10)) with torch.no_grad(): for data in testLoader: inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) outputs = net(inputs) _, predicted = torch.max(outputs, 1) c = (predicted == labels).squeeze() for i in range(8): label = labels[i] class_correct[label] += c[i].item() class_total[label] += 1 for i in range(10): print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i])) ``` ## 小練習 1. 我要成為調參俠! - 更改網路架構和參數, 嘗試讓準確度提高. 3. 你有看過這隻貓嗎? 長的超級可愛,如果你沒看過,現在讓你看看~ - 用訓練好的模型辨認這可愛的貓貓和美妙的數字. ![](https://i.imgur.com/KVHgwu1.jpg =50%x) ![](https://i.imgur.com/rgShN8j.jpg =50%x) - 用`torch.save(model.state_dict(), PATH)`和`model.load_state_dict(torch.load(PATH))`保存和寫入模型. [官方文件](https://pytorch.org/tutorials/beginner/saving_loading_models.html) - 用PIL套件處理影像[Importing Image Data into NumPy Arrays](https://www.pluralsight.com/guides/importing-image-data-into-numpy-arrays) ## Reference [[PyTorch 教學] Getting Start: 訓練分類器 —— CIFAR-10](https://clay-atlas.com/blog/2019/10/20/pytorch-chinese-tutorial-classifier-cifar-10/) [[PyTorch 教學] Getting Start: 訓練分類器 —— MNIST](https://clay-atlas.com/blog/2019/10/19/pytorch-%E6%95%99%E5%AD%B8-getting-start-%E8%A8%93%E7%B7%B4%E5%88%86%E9%A1%9E%E5%99%A8-mnist/) [[PyTorch 教學] Getting Start: Neural Networks 神經網路的基本介紹](https://clay-atlas.com/blog/2019/10/16/pytorch-%E6%95%99%E5%AD%B8-getting-start-neural-networks-%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF%E7%9A%84%E5%9F%BA%E6%9C%AC%E4%BB%8B%E7%B4%B9/) ## 推薦課程 [CS231n](http://cs231n.stanford.edu/2019/) [李宏毅 機器學習](http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML19.html) loss function & cost function https://medium.com/@gatorsquare/ml-gradient-descent-%E6%A2%AF%E5%BA%A6%E4%B8%8B%E9%99%8D%E6%B3%95-c664b5874e5c ### 下載圖片: curl https://i.imgur.com/KVHgwu1.jpg%20=50%x |grep -oP 'data-src=(.*?).jpg'|cut -d '"' -f2 |xargs -i curl {} -O # Mnist 練習 byK https://colab.research.google.com/drive/1QHD32BoRA3y6Nq-FckxxLC3dXIZLVwrt?authuser=2#scrollTo=TEv8S8xoPWbL # 鐵達尼號(來看看自己的生存率) byK https://colab.research.google.com/drive/1LGQszyDMbZsc5iw_M48OHvBWJZ7bkGZP?usp=sharing

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully