pr3pony
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    1
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- title: 2021 一中資奧研習 slideOptions: # 簡報相關的設定 theme: solarized # 顏色主題 --- # 2021 一中資奧研習 <!-- Put the link to this slide here so people can follow --> slide: https://bit.ly/2M2ueUN --- # Who am I? - 張集貴 - [pr3pony](https://clist.by/coder/pr3pony/) :heart: :carousel_horse: - i use arch btw <!--{%youtube E8Nj7RwXf0s %}--> ---- - 2014 會 Hello World! 的高一 - 2015 全國賽, 差 2 名三等獎 - 2016 入營考, 沒進 - 2016 全國賽第四名 - 2017 TOI 2! 第九名 --- # outline - 選手之路 - DEBUG - 基本演算法:複雜度,C++ STL,枚舉,二分,排序 - DS - 圖論 ---- - DS 內建ㄉ: - array - stack - queue - deque - priority queue(heap) ---- - DS 要自己寫ㄉ: - DSU - 前綴和 - 分塊法 - Segment tree - Fenwick tree - Treap - 可持久化線段樹 - 可持久化 Treap - 時間線段樹 + 可回溯 DSU ---- - 圖論 - DFS, BFS - MST - 單源最短路 - 全點對最短路 - 樹直徑 - 樹 LCA https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/all --- # 選手之路 [演算法比賽網路資源整理](https://hackmd.io/@xQGCDZGPSKutcn2ux55kvA/HysEHoYe8) ---- ## 主線任務 - 整年: TOI 海選, APCS - 上學期 - ? 月校內初選 - 11 月中區賽 - 12 月全國賽,前 10 名進入 TOI 1! - 下學期 - 3 月初 TOI 初選,前 20 名進入 TOI 1! - 3 月中 TOI 1!,前 12 名進入 TOI 2! - 4 月中 TOI 2!,前 4 名成為 IOI 國手 - https://ioi2021.sg/ ---- ## 支線任務 - NPSC - ISSC - HP CodeWars - TOI 2! 成員可比 APIO - YTP 少年圖靈計畫 ---- ## 線上大賽(拿 T-shirt!) - Google Code Jam - TopCoder Open - Facebook Hacker Cup ---- ## 變強的方法 [SECRET](https://youtu.be/dQw4w9WgXcQ) ---- ## 刷題網站 - [code-drills](https://recommender.codedrills.io/profile?handles=pr3pony) - [AtCoder Problems](https://kenkoooo.com/atcoder/#/table/pr3pony) - [OI Checklist](https://oichecklist.pythonanywhere.com/) ---- ## 考古題 - [~2018入營考考古題 ](https://tioj.ck.tp.edu.tw/contests/70) - [~2015 全國賽考古題](https://tioj.ck.tp.edu.tw/contests/46) - [TIOJ 全國賽考古題](https://tioj.ck.tp.edu.tw/problems?tag=%E5%85%A8%E5%9C%8B%E8%B3%BD) - [ZeroJudge 全國賽考古題](https://zerojudge.tw/Problems?tag=%E5%85%A8%E5%9C%8B) - [2015 ~ 2020 TOI 模考題目 - 資訊競賽選手新手村](https://www.facebook.com/groups/1500275723594463/files) - [部份 TOI 模考題目](https://tioj.ck.tp.edu.tw/problems?tag=TOI) ---- ## 廣告(?) [USACO Second Contest: Jan 22-25](http://usaco.org/index.php) ---- ## 活動 - 台大 [IOICamp](https://www.facebook.com/ioicamp/) - 交大 [PCCA Winter Camp](https://www.facebook.com/NCTUPCCA) - 清大 [ION Camp](https://www.facebook.com/nthuioncamp/) --- # DEBUG - 用看的 - printf 大法 - assert 大法 - sanitizer 大法 ---- ## printf 大法 - fprintf(stderr, "x = %d\n", x); - cerr << "x = " << x << endl; - puts("meow"); 二分搜壞掉行數 - default code 裡放輸出 macro: [例一](https://codeforces.com/contest/1444/submission/97321479) [例二](https://codeforces.com/contest/1467/submission/104600563) ---- ## assert 大法 ```cpp= #include <bits/stdc++.h> using namespace std; template<typename T> void mysort(T a, T b) {/*miracle!*/} int main() { int n; assert(cin >> n); assert(n >= 0); vector<int> a(n); for (int i = 0; i < n; ++i) assert(cin >> a[i]); mysort(a.begin(), a.end()); assert(is_sorted(a.begin(), a.end())); } ``` - assert 自己算法保證的東西 - assert 輸入符合範圍 - <del>偷測資</del> ---- ## sanitizer 大法 ```bash= $ g++ a.cpp -fsanitize=address -fsanitize=undefined -g ``` 題外話: -Wall -Wextra -Wconversion -Wshadow ```cpp= #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int *a = new int[n]; for (int i = 0; i < n; ++i) cin >> a[i]; cout << a[0] * a[0] << endl; cout << a[87] << endl; } ``` --- # 複雜度 --- # C++ STL --- # 枚舉 --- # 二分 ---- 假設有一個函數 $ok : \{ 1,2,\cdots,n \}\rightarrow \{true, false\}$,且存在 $i$ 滿足 $ok(j) = true \Leftrightarrow j \le i$ ```cpp= int l = 1, r = n; while (l <= r) { int m = l + (r - l) / 2; if (ok(m)) l = m + 1; else r = m - 1; } ``` while 結束後 - $l=i+1, r = i$ - $l$ 是第一個 false, $r$ 是最後一個 true ---- ## 單一指標的二分搜 ```cpp= int p = 0; for (int s = 1 << __lg(n); s; s >>= 1) if (p + s <= n && ok(p + s)) p += s; ``` for 結束後,$p=i$ --- # 排序 ---- ## insertion sort ```cpp= for (int i = 1; i < n; ++i) for (int j = i; j > 0 && a[j] < a[j - 1]; --j) swap(a[j], a[j - 1]); ``` ---- ## quick sort ---- ## merge sort - 例題:逆序數對 - https://tioj.ck.tp.edu.tw/problems/1080 - https://judge.tcirc.tw/ShowProblem?problemid=d064 - https://zerojudge.tw/ShowProblem?problemid=a457 --- # array ```cpp #include<algorithm> #include<cassert> #include<cstring> using namespace std; const int N = 1e6 + 87; int tmp[N]; int tmd[1'588'806]; // single quote separator (since C++ 14) int main() { for (int i = 0; i < N; ++i) assert(tmp[i] == 0); fill_n(tmp, N, 1e9); memset(tmd, 0x78, sizeof tmd); for (int i = 0; i < 1588806; ++i) { assert(tmd[i] == 0x78787878); assert(tmd[i] == 2021161080); } int tmt[514] = {}; for (int & x : tmt) { assert(x == 0); x = 514; } // swap(tmt, tmp); // CE int * PrincessTwilight = tmt, * PinkiePie = tmp; assert(PrincessTwilight[5] == 514 && PinkiePie[0] == 1e9); swap(PrincessTwilight, PinkiePie); assert(PrincessTwilight[5] == 1e9 && PinkiePie[0] == 514); PinkiePie = new int [N](); for (int i = 0; i < N; ++i) assert(PinkiePie[i] == 0); } ``` ---- ## std::vector ```cpp #include<algorithm> #include<cassert> #include<vector> using namespace std; int main() { int N = 1450; vector<long long> a(N, 87); auto b = a; assert(b.size() == 1450); for (long long x : b) assert(x == 87); a.assign(1450145, 0x123456789abcdef0); b.resize(514514, 0x123456789abcdef0); for (int i = 0; i < 1450; ++i) assert(b[i] == 87); for (int i = 1450; i < 514514; ++i) assert(b[i] == 0x123456789abcdef0); a.swap(b); b.swap(a); // O(1) swap(a, b); // O(1) assert(b.size() == 1450145); for (auto x : b) assert(x == 0x123456789abcdef0); } ``` ---- ## std::array ```cpp #include<algorithm> #include<cassert> #include<array> // since C++ 11 using namespace std; const int N = 1e6 + 87; array<double, N> c, d; int main() { for (int i = 0; i < N; ++i) assert(c[i] == 0); for (int i = 0; i < N; ++i) assert(d[i] == 0); c.fill(8.7); d.fill(6.5); for (auto x : d) assert(x == 6.5); for (auto x : c) assert(x == 8.7); swap(c, d); // O(1) for (auto x : d) assert(x == 8.7); for (auto x : c) assert(x == 6.5); } ``` --- # stack - LIFO - DFS - 括號匹配 ---- ## 例題 ![](https://i.imgur.com/Eey6Xy3.png) ---- ```cpp #include <iostream> #include <stack> #include <algorithm> using namespace std; const int N = 100000 + 87; int n, h[N], lt[N], rt[N]; int main() { ios::sync_with_stdio(0); cin.tie(0); while (cin >> n, n) { h[0] = h[n + 1] = -1; for (int i = 1; i <= n; ++i) cin >> h[i]; stack<int> s; s.push(0); for (int i = 1; i <= n; ++i) { while (h[s.top()] >= h[i]) s.pop(); lt[i] = s.top(); s.push(i); } while (s.size()) s.pop(); s.push(n + 1); for (int i = n; i >= 1; --i) { while (h[s.top()] >= h[i]) s.pop(); rt[i] = s.top(); s.push(i); } long long ans = 0; for (int i = 1; i <= n; ++i) ans = max(ans, (rt[i] - lt[i] - 1ll) * h[i]); cout << ans << '\n'; } } ``` --- # queue - FIFO - BFS ---- ## 例題 ![](https://i.imgur.com/UqoWk4x.png) ---- ```cpp #include <cstdio> #include <cstring> #include <queue> #define MAXN (1000 + 42) #define R first #define C second using namespace std; typedef pair<int, int> pii; char g[MAXN][MAXN]; int b[MAXN][MAXN]; int w[MAXN][MAXN]; int R, C; pii d[] = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}}; pii walk(pii a, pii b) { a.R += b.R; a.C += b.C; return a; } bool inrange(pii p) { return 0 <= p.R && p.R < R && 0 <= p.C && p.C < C; } bool block(pii p) { return g[p.R][p.C] == '#'; } int& burn_t(pii p) { return b[p.R][p.C]; } int main() { int T; scanf("%d", &T); while (T--) { queue<pii> f, j; scanf("%d%d ", &R, &C); for (int r = 0; r < R; r++) memset(b[r], -1, C * sizeof(int)); for (int r = 0; r < R; r++) memset(w[r], -1, C * sizeof(int)); for (int r = 0; r < R; r++) { fgets(g[r], sizeof(g[r]), stdin); for (int c = 0; c < C; c++) switch (g[r][c]) { case 'F': b[r][c] = 0; f.push({r, c}); break; case 'J': w[r][c] = 0; j.push({r, c}); break; } } while (!f.empty()) { pii p = f.front(); f.pop(); int t = burn_t(p) + 1; for (pii x : d) { pii n = walk(p, x); if (inrange(n) && !block(n) && burn_t(n) == -1) { burn_t(n) = t; f.push(n); } } } int fin = -1; while (!j.empty()) { pii p = j.front(); j.pop(); int t = w[p.R][p.C] + 1; for (pii x : d) { pii n = walk(p, x); if (inrange(n)) { if (!block(n) && (burn_t(n) > t || burn_t(n) == -1) && w[n.R][n.C] == -1) { w[n.R][n.C] = t; j.push(n); } } else { fin = t; goto output; } } } output: if (fin != -1) printf("%d\n", fin); else puts("IMPOSSIBLE"); } } ``` --- # deque - push_front - push_back - pop_front - pop_back - 完全可以取代 stack 跟 queue!:satisfied: ---- ## 例題 TIOJ 1566:簡單易懂的現代都市 有一個長度 $N$ 的正整數序列 $h[1,N]$, 輸出所有滿足 $max(h[L,R]) - min(h[L,R]) = K$ 的長度為 M 的區間 $(L, R)$。 (($L = 1$ 或 $R = N$) 且長度不超過 $M$ 的區間也算) ($N \leq 10^7, M \leq 10^6, 1 \leq h_i, K \leq 2^{31}$) [\CSY教我/](https://csy54.github.io/2019/02/TIOJ-1566/) ---- ```cpp #include <iostream> #include <vector> #include <algorithm> #include <deque> using namespace std; typedef long long ll; typedef pair<int,int> pii; typedef pair<ll,ll> pll; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int n, m; ll k; cin >> n >> m >> k; m = min(m, n); deque<pll> mn, mx; vector<pii> ans; for (int i = 0; i < n + m - 2; ++i) { if (i < n) { ll h; cin >> h; while (mn.size() && mn.back().second >= h) mn.pop_back(); mn.emplace_back(i, h); while (mx.size() && mx.back().second <= h) mx.pop_back(); mx.emplace_back(i, h); } while (mn.front().first + m <= i) mn.pop_front(); while (mx.front().first + m <= i) mx.pop_front(); if (mx.front().second - mn.front().second == k) ans.emplace_back(max(0, i - m + 1), min(n - 1, i)); } cout << ans.size() << endl; for (auto x : ans) cout << x.first + 1 << ' ' << x.second + 1 << '\n'; } ``` --- # priority queue - usually implemented with binary heap - Dijkstra's algorithm ---- ## 例題 UVa 11367: Full Tank? 給你一張 $n$ 點 $m$ 邊有邊權的無向圖,第 $i$ 條邊的權重是 $d_i$, 你是一台車子,走一單位距離要花一單位油,你的油箱容量上限是 $c$, 每個節點是一個加油站,在點 $i$ 加一單位油的價錢是 $p_i$, 求從給定的起點走到終點最少要花多少錢。 ($n \le 1000, m \le 10000, c \le 100$, $1 \le p_i, d_i \le 100$) ---- $dp[w][i] = 從起點走到 i 且油箱剩下 w 單位油的最小花費$ 發現等價在一張 $V = n \times (c + 1)$ 的圖上找最短路。 用 Dijkstra 去更新 dp 表格。 ---- ```cpp #include <cstdio> #include <cstring> #include <utility> #include <vector> #include <queue> #include <functional> using namespace std; const int maxn = 1024; const int maxc = 125; const int inf = 0x7f7f7f7f; int p[maxn]; typedef pair<int,int> pii; vector<pii> g[maxn]; int minc[maxn * maxc]; int main() { int n, m; scanf("%d%d", &n, &m); for (int i = 0; i < n; ++i) scanf("%d", p + i); while (m--) { int u, v, d; scanf("%d%d%d", &u, &v, &d); g[u].emplace_back(d, v); g[v].emplace_back(d, u); } int q; scanf("%d", &q); while (q--) { int c, s, e; scanf("%d%d%d", &c, &s, &e); priority_queue<pii, vector<pii>, greater<pii> > pq; memset(minc, 0x7f, (c + 1) * n * sizeof(int)); minc[s] = 0; pq.push({0, s}); while (pq.size()) { pii t = pq.top(); pq.pop(); pii u(t.second / n, t.second % n); if (t.first > minc[t.second]) continue; else if (u.second == e) break; int nxt; if (u.first < c) { int cost = t.first + p[u.second]; nxt = (u.first + 1) * n + u.second; if (minc[nxt] > cost) { minc[nxt] = cost; pq.push({cost, nxt}); } } for (const pii & x : g[u.second]) if (u.first >= x.first) { nxt = (u.first - x.first) * n + x.second; if (minc[nxt] > t.first) { minc[nxt] = t.first; pq.push({t.first, nxt}); } } } if (minc[e] < inf) printf("%d\n", minc[e]); else puts("impossible"); } } ``` --- # DSU maintains a partition of a finite set ---- ![](https://i.imgur.com/fFdaCsU.png) ---- ```cpp #include <bits/stdc++.h> const int MAXN = 100001; #define U first #define V second using namespace std; typedef pair<int, int> pii; pii edges[MAXN]; int qry[MAXN]; bool ruin[MAXN]; int ans[MAXN]; struct DS { vector<int> p, s; int setn; DS(int n) { p.resize(n + 1); iota(begin(p), end(p), 0); s.assign(n + 1, 1); setn = n; } int Find(int x) { return x == p[x] ? x : p[x] = Find(p[x]); } void Union(int x, int y) { x = Find(x); y = Find(y); if (x == y) return; if (s[x] > s[y]) swap(x, y); p[x] = y; s[y] += s[x]; setn--; } }; int main() { int n, m, q; cin >> n >> m; DS s(n); for (int i = 1; i <= m; i++) cin >> edges[i].U >> edges[i].V; cin >> q; for (int i = 0; i < q; i++) { cin >> qry[i]; ruin[qry[i]] = true; } for (int i= 1; i <= m; i++) if (!ruin[i]) s.Union(edges[i].U, edges[i].V); for (int i = q - 1; i >= 0; i--) { ans[i] = s.setn; s.Union(edges[qry[i]].U, edges[qry[i]].V); } for (int i = 0; i < q - 1; i++) cout << ans[i] << ' '; cout << ans[q-1] << endl; } ``` ---- ## 酷炫實做 ```cpp struct DS { vector<int> p, s; int setn; DS(int n) { p.assign(n + 1, -1); setn = n; } int Find(int x) { return p[x] < 0 ? x : p[x] = Find(p[x]); } void Union(int x, int y) { x = Find(x); y = Find(y); if (x == y) return; if (-p[x] > -p[y]) swap(x, y); p[y] += p[x]; p[x] = y; setn--; } }; ``` --- # 前綴和 區間和問題 給 $N(N \le 10^8)$ 個數字 $v_i(1\le i\le N)$,跟$Q(Q \le 10^8)$筆詢問 - query l r: 詢問區間 $[l,r]$ 的總和 https://zerojudge.tw/ShowProblem?problemid=e346 ---- ```cpp= long long v[N + 1], s[N +1]; for (int i = 1; i <= n; ++i) s[i] = s[i - 1] + v[i]; while (Q--) { int l, r; cin >> l >> r; cout << s[r] - s[l - 1] << '\n'; } ``` --- # 分塊法 ---- ### 區間和問題 給 $N(N \le 10^5)$ 個數字 $v_i(1\le i\le N)$,跟$Q(Q \le 10^5)$筆操作,操作包含兩種: - add i d: 將 $v_i$ 加上 $d$ - query l r: 詢問區間 $[l,r]$ 的總和 https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_B ---- - naive 做法:修改 $O(1)$, 查詢 $O(N) \rightarrow$ TLE - 前綴和:修改 $O(N)$, 查詢 $O(1) \rightarrow$ TLE - 每 $S$ 個一塊,每塊存一個和? - 修改 O(1),查詢 $O(S + N/S)$ - S 取 $\sqrt{N} \Rightarrow O(\sqrt{N})$ ---- ```cpp= #include<bits/stdc++.h> using namespace std; const int MAXN = 100005; const int SIZE = sqrt(MAXN); int a[MAXN], b[MAXN / SIZE + 1]; void add(int i, int d) { a[i] += d; b[i / SIZE] += d; } int query(int i) { int ret = 0, k = i / SIZE; for (int j = 0; j < k; ++j) ret += b[j]; for (int j = k * SIZE; j <= i; ++j) ret += a[j]; return ret; } int query(int l, int r) { return query(r) - query(l - 1); } int main() { ios::sync_with_stdio(0); cin.tie(0); int n, q; cin >> n >> q; while (q--) { int c, x, y; cin >> c >> x >> y; if (c == 0) add(x, y); else cout << query(x, y) << '\n'; } } ``` ---- ### RMQ 問題 給 $N(N \le 10^5)$ 個數字 $v_i(0 \le i\le N-1)$,跟$Q(Q \le 10^5)$筆操作,操作包含兩種: - add i d: 將 $v_i$ 設為 $d$ - query l r: 詢問區間 $[l,r]$ 的最小值 https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_A ---- - 不能用前綴和了 - 分塊:更新 $O(S)$,查詢 $O(S+N/S)$ - 更新:重新計算一塊的 min - 查詢: - $l$ 那塊:$O(S)$ - $r$ 那塊:$O(S)$ - 中間那些塊:$O(N/S)$ ---- ```cpp= #include<bits/stdc++.h> using namespace std; const int MAXN = 100005; const int SIZE = sqrt(MAXN); int n, q, a[MAXN], b[MAXN / SIZE + 1]; void upd(int i, int d) { a[i] = d; int k = i / SIZE; b[k] = INT_MAX; for (int j = k * SIZE; j < (k + 1) * SIZE && j < n; ++j) b[k] = min(b[k], a[j]); } int query(int l, int r) { int ret = INT_MAX; int kl = l / SIZE, kr = r / SIZE; if (kl == kr) { for (int j = l; j <= r; ++j) ret = min(ret, a[j]); } else { for (int j = l; j < (kl + 1) * SIZE; ++j) ret = min(ret, a[j]); for (int j = kr * SIZE; j <= r; ++j) ret = min(ret, a[j]); for (int j = kl + 1; j < kr; ++j) ret = min(ret, b[j]); } return ret; } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n >> q; fill_n(a, n, INT_MAX); fill_n(b, (n - 1) / SIZE + 1, INT_MAX); while (q--) { int c, x, y; cin >> c >> x >> y; if (c == 0) upd(x, y); else cout << query(x, y) << '\n'; } } ``` --- # Segment tree ---- ![](https://i.imgur.com/llQ6BDG.png) https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_B ---- 給 $N=5$、$v=1,16,2,8,4$,則線段樹每個節點代表的區間資訊如下圖所示。 ![](https://i.imgur.com/ji63ex6.png) ---- 假設我們想知道區間 $[1,4]$ 的總和,原本需要跑過陣列 $1 \sim 4$,現在只需要得到 $[1,3]$ 以及 $[4,4]$ 節點的資訊再將他們加總即可得知。可以證明的是如此一來查詢的複雜度爲 $O( \lg N )$。 ---- 一般而言,線段樹都會包含三個主要的函式: - build: 初始化線段樹 - modify: 修改線段樹,又分爲區間修改或單點修改 - query: 線段樹查詢區間資訊 ---- ## pointer implementation ### node ```cpp typedef long long ll; struct Node{ ll val; Node *lc , *rc; Node(){ val = 0; lc = rc = NULL; } void pull(){ val = lc->val + rc->val; } }; int n , v[ N ]; // assume already stored the input // v is 1-indexed here ``` ---- ### build ```cpp Node* build( int L , int R ){ Node *node = new Node(); if( L == R ){ node->val = v[ L ]; return node; } int mid = ( L + R ) >> 1; node->lc = build( L , mid ); node->rc = build( mid + 1 , R ); node->pull(); return node; } ``` ---- ### modify ```cpp void modify( Node* node , int L , int R , int i , int d ){ if( L == R ){ assert( L == i ); node->val += d; return; } int mid = ( L + R ) >> 1; if( i <= mid ) modify( node->lc , L , mid , i , d ); else modify( node->rc , mid + 1 , R , i , d ); node->pull(); } ``` ---- ### query ```cpp ll query( Node* node , int L , int R , int ql , int qr ){ if( ql > R || qr < L ) return 0; if( ql <= L && R <= qr ) return node->val; int mid = ( L + R ) >> 1; return query( node->lc , L , mid , ql , qr ) + query( node->rc , mid + 1 , R , ql , qr ); } ``` ---- ## array implementation ### heap indexing - $root = 1, left\_child(i) = 2i, right\_child(i) = 2i+1$ - 從長度 $2^k$ 的陣列建構的線段樹會把 $[1,2^{k+1}-1]$ 的編號用好用滿 - 令 $k = \lceil \lg(N) \rceil$, $2N \ge 2^k$, $4N \ge 2^{k+1}-1$ - 開 $4N$ 一定安全! ---- ```cpp #include<bits/stdc++.h> using namespace std; const int N = 2e5 + 87; typedef long long ll; int n , v[ N ]; // assume already stored the input // v is 0-indexed here ll t[N * 4]; void pull(int o) { t[o] = t[o + o] + t[o + 1 + o]; } // \左閉右開/ void build(int o = 1, int l = 0, int r = n) { if (r - l == 1) { t[o] = v[l]; return; } int m = l + (r - l) / 2; build(o + o, l, m); build(o + 1 + o, m, r); pull(o); return; } void modify(int i, int d, int o = 1, int l = 0, int r = n) { if (r - l == 1) { assert( l == i ); t[o] += d; return; } int m = l + (r - l) / 2; if (i < m) modify(i, d, o + o, l, m); else modify(i, d, o + 1 + o, m, r); pull(o); return; } ll query(int ql, int qr, int o = 1, int l = 0, int r = n) { if (ql >= r || qr <= l) return 0; if (ql <= l && r <= qr) return t[o]; int m = l + (r - l) / 2; return query(ql, qr, o + o, l, m) + query(ql, qr, o + 1 + o, m, r); } ``` ---- ## array implementation ### Euler tour indexing 長度 $N$ 的陣列建構的線段樹只會用到恰 $2N-1$ 個節點,前面 heap indexing 需要至多 $4N$ 空間,能否開剛好? 觀察在線段樹上 dfs (先走左子樹再走右子樹),會得到一個自然的編號方法,能把 $[1,2N-1]$ 用好用滿! ---- - 一個節點用左閉右開的區間 $[l,r)$ 來表示 $m = \lfloor \frac{l + r}{2} \rfloor = l + \lfloor \frac{r - l}{2} \rfloor = l + \lfloor \frac{len}{2} \rfloor$ 左孩子是 $[l,m)$,右孩子是 $[m,r)$ - $left\_child(i) = i + 1$ 因為先走左子樹 - $right\_child(i) = i + \lfloor \frac{len}{2} \rfloor \times 2$ 因為左子樹的區間長為 $\lfloor \frac{len}{2} \rfloor$,會用到 $\lfloor \frac{len}{2} \rfloor \times 2 - 1$ 個連續的編號, 下一個沒用到的編號是 $i + (\lfloor \frac{len}{2} \rfloor \times 2 - 1) + 1 = i + \lfloor \frac{len}{2} \rfloor \times 2$ - 比 heap indexing 更加 cache friendly (? ---- ```cpp #include<bits/stdc++.h> using namespace std; const int N = 2e5 + 87; typedef long long ll; int n , v[ N ]; // assume already stored the input // v is 0-indexed here ll t[N * 2]; void pull(int o, int z) { t[o] = t[o + 1] + t[z]; } // \左閉右開/ void build(int o = 1, int l = 0, int r = n) { if (r - l == 1) { t[o] = v[l]; return; } int m = l + (r - l) / 2; int z = o + (r - l) / 2 * 2; build(o + 1, l, m); build(z, m, r); pull(o, z); return; } void modify(int i, int d, int o = 1, int l = 0, int r = n) { if (r - l == 1) { assert( l == i ); t[o] += d; return; } int m = l + (r - l) / 2; int z = o + (r - l) / 2 * 2; if (i < m) modify(i, d, o + 1, l, m); else modify(i, d, z, m, r); pull(o, z); return; } ll query(int ql, int qr, int o = 1, int l = 0, int r = n) { if (ql >= r || qr <= l) return 0; if (ql <= l && r <= qr) return t[o]; int m = l + (r - l) / 2; int z = o + (r - l) / 2 * 2; return query(ql, qr, o + 1, l, m) + query(ql, qr, z, m, r); } ``` ---- ## 區間修改-懶標記(lazy propagation) ![](https://i.imgur.com/LC7OnSX.png) https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_G ---- ```cpp #include<bits/stdc++.h> using namespace std; typedef long long ll; struct Node{ ll val , tag; Node *lc , *rc; Node(){ tag = val = 0; lc = rc = NULL; } void pull(){ val = lc->val + rc->val; } }; const int N = 1e6 + 87; int n , v[ N ]; // assume already stored the input Node* build( int L , int R ){ Node *node = new Node(); if( L == R ){ node->val = v[ L ]; return node; } int mid = ( L + R ) >> 1; node->lc = build( L , mid ); node->rc = build( mid + 1 , R ); node->pull(); return node; } void apply( Node * node , int L , int R , ll d ){ node->tag += d; node->val += d * ( R - L + 1 ); } void push( Node* node , int L , int R ){ if( !node->tag ) return; int mid = ( L + R ) >> 1; apply( node->lc , L , mid , node->tag ); apply( node->rc , mid + 1 , R , node->tag ); node->tag = 0; } void modify( Node* node , int L , int R , int ql , int qr , ll d ){ if( ql > R || qr < L ) return; if( ql <= L && R <= qr ){ apply( node , L , R , d ); return; } push( node , L , R ); int mid = ( L + R ) >> 1; modify( node->lc , L , mid , ql , qr , d ); modify( node->rc , mid + 1 , R , ql , qr , d ); node->pull(); } ll query( Node* node , int L , int R , int ql , int qr ){ if( ql > R || qr < L ) return 0; if( ql <= L && R <= qr ) return node->val; push( node , L , R ); int mid = ( L + R ) >> 1; return query( node->lc , L , mid , ql , qr ) + query( node->rc , mid + 1 , R , ql , qr ); } void clear( Node * node ) { if ( !node ) return; clear( node->lc ); clear( node->rc ); delete node; } int main(){ int q; scanf("%d%d", &n, &q); for (int i = 1; i <= n; ++i) scanf("%d", &v[i]); Node* root = build( 1 , n ); while (q--) { int ot, l, r, x; scanf("%d%d%d", &ot, &l, &r); if (ot == 1) { scanf("%d", &x); modify( root , 1 , n , l , r , x ); } else { printf( "%lld\n" , query( root , 1 , n , l , r ) ); } } clear(root); } ``` ---- 打上標記函數: ```cpp void apply( Node * node , int L , int R , ll d ){ node->tag += d; node->val += d * ( R - L + 1 ); } ``` push 函數: ```cpp void push( Node* node , int L , int R ){ if( !node->tag ) return; int mid = ( L + R ) >> 1; apply( node->lc , L , mid , node->tag ); apply( node->rc , mid + 1 , R , node->tag ); node->tag = 0; } ``` ---- 修改線段樹與懶標記六部曲: - 區間沒有交集,即return - $[L,R] \subseteq [ql,qr]$,修改資訊,打上標記,return - push 懶標記 - 修改左子樹 - 修改右子樹 - pull - $O(\lg n)$ ---- ```cpp void modify( Node* node , int L , int R , int ql , int qr , ll d ){ if( ql > R || qr < L ) return; if( ql <= L && R <= qr ){ apply( node , L , R , d ); return; } push( node , L , R ); int mid = ( L + R ) >> 1; modify( node->lc , L , mid , ql , qr , d ); modify( node->rc , mid + 1 , R , ql , qr , d ); node->pull(); } ``` ---- 查詢線段樹與懶標記六步驟: - 區間不相交,回傳不影響答案之值 - $[L,R] \subseteq [ql,qr]$,回傳節點上的資訊 - push 懶標記 - 收集左子樹查詢之資訊 - 收集右子樹查詢之資訊 - 回傳兩子樹資訊結合後之結果 - $O(\lg n)$ ---- ```cpp ll query( Node* node , int L , int R , int ql , int qr ){ if( ql > R || qr < L ) return 0; if( ql <= L && R <= qr ) return node->val; push( node , L , R ); int mid = ( L + R ) >> 1; return query( node->lc , L , mid , ql , qr ) + query( node->rc , mid + 1 , R , ql , qr ); } ``` ---- 什麼都會了?! ```cpp // 查詢:區間乘法 void pull(){val = lc->val * rc->val;} // 查詢:區間最小值 void pull(){val = min(lc->val, rc->val);} // 查詢:區間 gcd void pull(){val = gcd(lc->val, rc->val);} ``` 要有結合律的運算才能用線段樹維護! --- # Fenwick tree - Binary Indexed Tree - BIT ---- input = $a[1...n]$ $s[i] = \sum_{j=i−lowbit(i)+1}^{i}a[j]$ $sum(i) = a[1] + a[2] + \cdots + a[i]$ $= s[i] + sum(i - lowbit(i))$ $lowbit(x)$ 的值是 $x$ 寫成二進位時最小的一個 $1$-bit 的值,例如 $44$ 寫成二進位是 $101100$,那$lowbit(44) = 4$(因為是右邊數來第$3$個bit所以是$2^{3−1}= 4$),而$s[44]$存的就是$a[41...44]$的和。 ---- ![](https://i.imgur.com/W9UtpvQ.png) ---- ```cpp int n , s[ 1000010 ]; int sum( int id ) { int res = 0; for( int i = id ; i > 0 ; i -= i&-i ) res += s[ i ]; return res; } ``` ---- 更新時 $a[i]$ 時要找所有的 $j$ 滿足 $j - lowbit(j) < i \le j$。 把 $j$ 寫成一個遞增數列:$j_0 = i, j_{k+1} = j_k + lowbit(j_k)$ 證明: - $j > i$ 表示 $i,j$ 寫成二進位後的共同前綴後面一個 bit $j$ 是 $1$, $i$ 是 $0$。 - 更右邊的 bit, $j$ 若有 $1$ 則 $j - lowbit(j) > i$ ,矛盾。 - 右邊都是 $0$ 這樣的 $j$ 滿足 $j - lowbit(j) < i$。 - $j = i$ 的某個 $0$-bit 翻成 $1$, 右邊全設 $0$ ---- ```cpp void upd( int id , int x ) { for( int i = id ; i <= n ; i += i&-i ) s[ i ] += x; } ``` ---- ![](https://i.imgur.com/gYAX52P.png) ---- ```cpp #include <bits/stdc++.h> using namespace std; struct BIT { int sz; vector< int > dat; void init( int _sz ) { sz = _sz; dat.assign( sz + 1 , 0 ); } void upd( int id , int x ) { for( int i = id ; i <= sz ; i += i&-i ) dat[ i ] += x; } int sum( int id ) { int res = 0; for( int i = id ; i > 0 ; i -= i&-i ) res += dat[ i ]; return res; } int kth( int k ) { int res = 0; for( int i = 1 << __lg( sz ) ; i > 0 ; i >>= 1 ) if( res + i <= sz && dat[ res + i ] < k ) k -= dat[ res += i ]; return res + 1; } }; const int MAXN = 1000010; int n, a[ MAXN ]; BIT bit; int main() { scanf( "%d" , &n ); long long ans = 0; bit.init( MAXN ); for( int i = 1 ; i <= n ; i++ ) { scanf( "%d" , a+i ); ans += bit.sum( 1000000 ) - bit.sum( a[ i ] ); bit.upd( a[ i ] , 1 ); } printf( "%lld\n" , ans ); } ``` ---- ## order statistic data structure! 要怎麼用 BIT 維護整數的 multiset 呢? 可以把$a[i]$當作$i$在集合裡出現幾次,那$sum(i)$就是 $\le i$ 的元素有幾個 ---- - 由於這邊的$sum(x)$是一個非遞減的函數,我們可以藉由二分搜$sum(x)$來求第$k$小元素 - 直接對$[1,n]$套用一般的二分搜方法,需要呼叫$O(\log n)$次的$sum(x)$,複雜度變成$O(\log^2 n)$ - BIT 儲存的資訊,讓它天生適用二進制分解、枚舉位元的二分搜,達到 $O(\log n)$ 的複雜度。 ---- ```cpp int kth( int k ) { int res = 0, cur = 0; for( int i = 1 << __lg( n ) ; i > 0 ; i >>= 1 ) if( res + i <= n && cur + s[ res + i ] < k ) cur += s[ res += i ]; return res + 1; } ``` ---- ## 樹套樹 ![](https://i.imgur.com/XLHTwri.png) <del>根號是什麼鬼</del> ---- ```cpp #include<bits/stdc++.h> #include<bits/extc++.h> using namespace std; using namespace __gnu_pbds; typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> set_t; const int N = 2e5 + 87; set_t f[N]; void add(int i, int j) { for (; i < N; i += i & - i) f[i].insert(j); } void sub(int i, int j) { for (; i < N; i += i & - i) f[i].erase(j); } int qry(int i, int l, int r) // [l, r] { int ret = 0; for (; i > 0; i -= i & - i) ret += f[i].order_of_key(r + 1) - f[i].order_of_key(l); return ret; } int a[N]; int main() { ios::sync_with_stdio(0); cin.tie(0); int n, q; cin >> n >> q; for (int i = 1; i <= n; ++i) add(a[i] = i, i); long long ans = 0; while (q--) { int l, r; cin >> l >> r; if (l == r) { cout << ans << '\n'; continue; } int lp = qry(a[l], l+1, r-1); int rp = qry(a[r], l+1, r-1); int w = r-1 - (l+1) + 1; ans += w - 2 * lp + 2 * rp - w; ans += (a[r] > a[l]) - (a[l] > a[r]); sub(a[l], l); sub(a[r], r); swap(a[l], a[r]); add(a[l], l); add(a[r], r); cout << ans << '\n'; } } ``` --- # Treap ---- 樹堆,望名生義,便是結合兩種資料結構的綜合體: - 二元搜尋**樹** (Binary Search Tree, BST) - **堆**積 (Heap) - Treap 名稱的由來,即是樹 (Tree)+堆 (Heap)。 ---- 二元搜尋樹,便是具有如下性質的二元樹: - 左子樹上所有節點的值均小於等於根節點的值 - 右子樹上所有節點的值均大於等於根節點的值 - 左右子樹也皆爲二元搜尋樹 ---- 堆積,便是具有如下性質的二元樹: - 左子樹上所有節點的值均小於等於根節點的值 - 右子樹上所有節點的值均小於等於根節點的值 - 左右子樹也皆爲堆積 ---- 爲了滿足二元搜尋樹以及最大堆的性質,在樹堆中的節點均帶有兩個值: pri (代表最大堆積中之值)、 key (代表二元搜尋樹中之值),也就是說對於樹堆中的節點均滿足以下條件: - pri $\geq$ 左子節點的 pri - pri $\geq$ 右子節點的 pri - key $\geq$ 左子節點的 key - key $\leq$ 右子節點的 key 以上前兩個條件稱爲**堆性質**,後兩個條件稱爲**樹性質**。 令 $P(N) = N$ 個點的 treap 的所有點的深度和的期望值,$P(N) = O(N \log N)$ ---- ```cpp struct Treap{ Treap *l , *r; int pri , key , val; Treap( int _val , int _key ) : val( _val ) , key( _key ), l( NULL ), r( NULL ), pri( rand() ) {} }; ``` ---- ```cpp Treap* merge( Treap* a , Treap* b ){ if( !a || !b ) return a ? a : b; if( a->pri > b->pri ){ a->r = merge( a->r , b ); return a; }else{ b->l = merge( a , b->l ); return b; } } ``` ---- ```cpp void split( Treap* t , int k , Treap *&a , Treap *&b ){ if( !t ) a = b = NULL; else if( t->key <= k ){ a = t; split( t->r , k , a->r , b ); }else{ b = t; split( t->l , k , a , b->l ); } } ``` ---- ```cpp Treap* insert( Treap* t , int k ){ Treap *tl , *tr; split( t , k , tl , tr ); return merge( tl , merge( new Treap( k ) , tr ) ); } Treap* remove( Treap* t , int k ){ Treap *tl , *tr; split( t , k - 1 , tl , t ); split( t , k , t , tr ); return merge( tl , tr ); } ``` ---- ![](https://i.imgur.com/aZj9J4q.png) ---- ```cpp #include <cstdio> #include <algorithm> #include <stack> #include <ctime> #include <cstdlib> #include <queue> #define MAXN 800000 #define INF 2147483647 using namespace std; struct treap { int v; int sz; int p; int mn; int rev; int add; treap *l, *r; treap() {} treap(int k) : v(k), sz(1), p(rand()), mn(k), rev(0), add(0), l(NULL), r(NULL) {} }; treap mempool[MAXN]; treap* ptr; treap* gc; // use treap as linked list to garbage collect inline void init() { ptr = mempool; gc = NULL; } inline void Del(treap* t) { t->l = gc; gc = t; } inline treap* New(int v) { if (gc == NULL) { *ptr = treap(v); return ptr++; } else { treap* t = gc; gc = gc->l; *t = treap(v); return t; } } inline int size(treap* t) { return t != NULL ? t->sz : 0; } inline int small(treap* t) { return t != NULL ? t->mn + t->add : INF; } inline void pull(treap* t) { if (t == NULL) return; t->sz = 1 + size(t->l) + size(t->r); t->mn = min(t->v, min(small(t->l), small(t->r))); } inline void reverse(treap* t) { if (t != NULL) t->rev ^= 1; } inline void addn(treap* t, int v) { if (t != NULL) t->add += v; } inline treap* push(treap* t) { if (t != NULL) { if (t->rev) { swap(t->l, t->r); reverse(t->l); reverse(t->r); t->rev = 0; } if (t->add) { t->v += t->add; t->mn += t->add; addn(t->l, t->add); addn(t->r, t->add); t->add = 0; } } return t; } void split(treap* t, int k, treap*& a, treap*& b) { // split first k nodes from t to a, others to b push(t); if (t == NULL) { a = b = NULL; } else if (size(t->l) + 1 <= k) { a = t; split(t->r, k - size(t->l) - 1, a->r, b); pull(a); } else { b = t; split(t->l, k, a, b->l); pull(b); } } treap* merge(treap* a, treap* b) { if (a == NULL) return push(b); else if (b == NULL) return push(a); if (a->p > b->p) { push(a); a->r = merge(a->r, b); pull(a); return a; } else { push(b); b->l = merge(a, b->l); pull(b); return b; } } inline void slice(treap* t, int x, int y, treap*& l, treap*& m, treap*& r) { split(t, x - 1, l, r); split(r, y - x + 1, m, r); } treap* build(int n) { treap* r = NULL; int v; stack<treap*> rc; treap* nt; while (n--) { scanf("%d", &v); nt = New(v); r = NULL; while (!rc.empty() && rc.top()->p < nt->p) { pull(r = rc.top()); rc.pop(); } nt->l = r; if (!rc.empty()) rc.top()->r = nt; rc.push(nt); } while (!rc.empty()) { pull(r = rc.top()); rc.pop(); } return r; } int main() { srand(42); int n, q; char cmd[10]; int x, y, v; treap *l, *m, *r; treap *ml, *mr; treap* root; while (scanf("%d", &n) == 1) { init(); root = build(n); scanf("%d", &q); while (q--) { scanf("%s", cmd); switch (cmd[0]) { case 'A': scanf("%d%d%d", &x, &y, &v); slice(root, x, y, l, m, r); addn(m, v); root = merge(merge(l, m), r); break; case 'I': scanf("%d%d", &x, &v); split(root, x, l, r); root = merge(merge(l, New(v)), r); break; case 'D': scanf("%d", &x); slice(root, x, x, l, m, r); Del(m); root = merge(l, r); break; case 'M': scanf("%d%d", &x, &y); slice(root, x, y, l, m, r); printf("%d\n", m->mn); root = merge(merge(l, m), r); break; case 'R': scanf("%d%d", &x, &y); switch (cmd[3]) { case 'E': slice(root, x, y, l, m, r); reverse(m); root = merge(merge(l, m), r); break; case 'O': scanf("%d", &v); int len = (y-x+1); v = (v % len + len) % len; // v could be negative? if (v) { slice(root, x, y, l, m, r); split(m, len-v, ml, mr); root = merge(merge(l, merge(mr, ml)), r); } break; } break; } } } return 0; } ``` --- # 可持久化線段樹 https://oi-wiki.org/ds/persistent-seg/ ---- - POJ 2104: 區間第 K 小 ```cpp= #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N = 1e5 + 87; struct seg { int su, lc, rc; } S[20 * N]; int ver[N], ptr; void init() {ptr = 1;} int newseg() { memset(S + ptr, 0, sizeof(seg)); return ptr++; } int newseg(seg t) { S[ptr] = t; return ptr++; } void pull(int t) {S[t].su = S[S[t].lc].su + S[S[t].rc].su;} int n, q, a[N], b[N], C; int add(int t, int i, int v, int l = 0, int r = C) { t = t ? newseg(S[t]) : newseg(); if (r - l == 1) { S[t].su += v; return t; } int m = (l + r) / 2; if (i < m) S[t].lc = add(S[t].lc, i, v, l, m); else S[t].rc = add(S[t].rc, i, v, m, r); pull(t); return t; } int qry(int lt, int rt, int k, int l = 0, int r = C) { if (r - l == 1) return l; int m = (l + r) / 2; int ls = S[S[rt].lc].su - S[S[lt].lc].su; if (ls >= k) return qry(S[lt].lc, S[rt].lc, k, l, m); else return qry(S[lt].rc, S[rt].rc, k - ls, m, r); } int main() { init(); scanf("%d%d", &n, &q); for (int i = 1; i <= n; ++i) scanf("%d", &a[i]); copy(a + 1, a + 1 + n, b); sort(b, b + n); C = unique(b, b + n) - b; for (int i = 1; i <= n; ++i) { a[i] = lower_bound(b, b + C, a[i]) - b; ver[i] = add(ver[i - 1], a[i], 1); } while (q--) { int l, r, k; scanf("%d%d%d", &l, &r, &k); printf("%d\n", b[qry(ver[l - 1], ver[r], k)]); } } ``` ---- - TIOJ 1827: 區間 rank + 二分搜 ```cpp= #include <bits/stdc++.h> using namespace std; // nichijou #define REP(i,a,b) for (int i = (a), __e = (b); i < __e; ++i) #define RP(i,n) REP(i,0,n) #define PER(i,s,e) for (int i = (s) - 1, __e = (e); i >= __e; --i) #define PR(i,n) PER(i,n,0) #define REP1(i,a,b) for (int i = (a), __e = (b); i <= __e; ++i) #define RP1(i,n) REP1(i,1,n) #define PER1(i,s,e) for (int i = (s), __e = (e); i >= __e; --i) #define PR1(i,n) PER1(i,n,1) #define DO(n) REP(__i,0,n) template<typename T> void cmax(T & a, T b) {a = max(a, b);} template<typename T> void cmin(T & a, T b) {a = min(a, b);} // data type typedef long long ll; typedef pair<int,int> pii; typedef pair<ll,ll> pll; #define F first #define S second // STL container typedef vector<int> vi; typedef vector<ll> vll; #define SZ(a) ((int)a.size()) #define ALL(a) a.begin(), a.end() #define CLR(a) a.clear() #define BK(a) (a.back()) #define FT(a) (a.front()) #define DB(a) a.pop_back() #define DF(a) a.pop_front() #define PB push_back #define EB emplace_back /* Reading input is now 20% cooler! */ bool RD(void) {return true;} template<typename T> bool RD(T & a) { int c; while (!isdigit(c = getchar())); a = c&15; while (isdigit(c = getchar())) a = 10 * a + (c & 15); return 1; } bool RD(double & a) {return scanf("%lf", &a) == 1;} bool RD(char & a) {return scanf(" %c", &a) == 1;} bool RD(char * a) {return scanf("%s", a) == 1;} template<typename T, typename ... TT> bool RD(T & a, TT & ... b) {return RD(a) && RD(b...);} /* Do princesses dream of magic sheep? */ #define RI(a) int a; RD(a) #define RII(a,b) RI(a); RI(b) #define RIII(a,b,c) RI(a); RII(b,c) #define RIIII(a,b,c,d) RI(a); RIII(b,c,d) /* For it's time for you to fulfill your output. */ void PT(const char * a) {fputs(a, stdout);} void PT(char * a) {fputs(a, stdout);} template<typename T> void PT(const T a) { static const int maxd = 25; static char d[maxd]; int i = maxd - 1; T t = a; do { d[--i] = (t % 10) | 48; } while (t /= 10); PT(d + i); } void PT(const double a) {printf("%.16f", a);} void PT(const char a) {putchar(a);} /* The line will last forever! */ void PL(void) {PT('\n');} template<typename T, typename ... TT> void PL(const T a, const TT ... b) {PT(a); if (sizeof...(b)) PT(' '); PL(b...);} /* Good Luck && Have Fun ! */ const int N = 1e5 + 87; const int D = __lg(N)+1; struct node { int s; node*l,*r; } mem[N*D*2]; node * rt[N],* ptr=mem; node * add(node * t,int l,int r,int i) { t=t?new(ptr++) node(*t):new(ptr++) node(); ++t->s; if (r-l==1) return t; int m=l+((r-l)>>1); if (i<m) t->l=add(t->l,l,m,i); else t->r=add(t->r,m,r,i); return t; } int qry(node*t,int l,int r,int i,int s=0) { if (!t) return s; if (r==i+1) return s+t->s; int m=l+((r-l)>>1); if (i<m) return qry(t->l,l,m,i,s); return qry(t->r,m,r,i,(t->l?t->l->s:0) + s); } int main() { RII(n,m); RP1(i,n) { RI(b); rt[i] = add(rt[i-1],1,n+1,b); } DO(m) { RII(p,k); ++p; int lo = 1, hi = n; while (lo <= hi) { int mi=(lo+hi)>>1; if (qry(rt[min(p+mi,n)],1,n+1,mi) - qry(rt[max(p-mi-1,0)],1,n+1,mi) >= k) hi = mi - 1; else lo = mi + 1; } PL(lo); } } ``` --- # 可持久化 Treap https://oi-wiki.org/ds/persistent-balanced/ <del>懶的講</del> --- # 時間線段樹 + 可回溯 DSU - [tioj 1903](https://tioj.ck.tp.edu.tw/problems/1903) - 給你一張 $N$ 點 $M$ 邊的無向圖,做 $Q$ 次修改,每次加一條邊或刪一條邊(可以有重邊但不會有自環),每次修改完輸出當前的連通塊數量 ---- ```cpp= #include<bits/stdc++.h> using namespace std; typedef pair<int,int> pii; #define F first #define S second /* I DUCK HORSE */ const int N = 5e5 + 87; struct hp { size_t operator () (const pii & x) const { return hash<long long>()(((long long)x.F)<<20 | x.S); } }; unordered_map<pii,pii,hp> la; vector<pii> t[N*4]; int p[N],sz[N],cc,tp; pair<int,int> h[N]; void jizz(int o,int l,int r,int i,int j, pii x) { if (i <= l && r <= j) { t[o].push_back(x); return; } int m=(l+r)>>1; if (i < m) jizz(o+o+1,l,m,i,j,x); if (j > m) jizz(o+o+2,m,r,i,j,x); } int find(int x) {return x == p[x] ? x : find(p[x]);} void gao(int o,int l,int r) { //cout<<'['<<l<<','<<r<<']'<<'\n'; int otp = tp, occ = cc; for (const auto & x : t[o]) { //cout<<x.F<<','<<x.S<<'\n'; int a = find(x.F), b = find(x.S); if (a == b) continue; if (sz[a] > sz[b]) swap(a,b); h[tp++] = {a,p[a]}; p[a]=b; sz[b]+=sz[a]; --cc; } t[o].clear(); if (r-l == 1) { cout << cc << '\n'; } else { int m=l+((r-l)>>1); gao(o+o+1,l,m); gao(o+o+2,m,r); } while (tp > otp) { --tp; int a = h[tp].F; sz[p[a]] -= sz[a]; p[a] = h[tp].S; } cc = occ; } int main() { ios::sync_with_stdio(0);cin.tie(0); for (int i = 0; i < N; ++i) p[i] = i; fill_n(sz,N,1); int T; cin>>T; while (T--) { la.clear(); int n,m,q; cin>>n>>m>>q; cc = n; for (int i = 0; i < m; ++i) { int u,v; cin>>u>>v; if (u>v) swap(u,v); pii x(u,v); auto it = la.find(x); if (it == la.end() || it->F != x) la.insert({x,{0,1}}); else it->S.S++; } for (int i = 0; i < q; ++i) { char c; int u,v; cin >> c >> u >> v; if (u>v) swap(u,v); pii x(u,v); auto it = la.find(x); if (c == 'N') { if (it == la.end() || it->F != x) la.insert({x,{i,1}}); else it->S.S++; } else { if (!--it->S.S) { jizz(0,0,q,it->S.F,i,x); la.erase(it); } } } for (const auto & x : la) jizz(0,0,q,x.S.F,q,x.F); gao(0,0,q); } } ``` --- ### Thank you! :horse: You can find me on - Codeforces: https://codeforces.com/profile/pr3pony - Facebook: https://www.facebook.com/prpr.py - Twitter: https://twitter.com/pr3pony - GitHub: https://github.com/prprprpony/ - or email me: b06902052@ntu.edu.tw

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully