jack4818
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # CryptoCTF 2021 | Challenge | Category | Solved by | | -------- | --------- | ---------- | | Farm | Finite Field | EvilMuffinHa | | KeyBase | B | UnblvR | | Maid | B | defund | | Salt and Pepper | Hash length extension | willwam845 | | RSAphantine | Diophantine equations | UnblvR, AC | | Triplet | RSA | willwam845 | | Rami | Encoding | willwam845, randomdude999 | | A | B | C | <!-- Template for writeup --> ## Challenge Name ##### Score ### Challenge ### Solution ##### Flag ## Farm ### Challenge Explore the Farm very carefully! Attachment: - [farm.txz](https://cryp.toc.tf/tasks/farm_0a16ef99ff1f979039cda1a685ac0344b927eee6.txz) ### Code Review ```python #!/usr/bin/env sage from sage.all import * import string, base64, math from flag import flag ALPHABET = string.printable[:62] + '\\=' F = list(GF(64)) def keygen(l): key = [F[randint(1, 63)] for _ in range(l)] key = math.prod(key) # Optimization the key length :D return key def maptofarm(c): assert c in ALPHABET return F[ALPHABET.index(c)] def encrypt(msg, key): m64 = base64.b64encode(msg) enc, pkey = '', key**5 + key**3 + key**2 + 1 for m in m64: enc += ALPHABET[F.index(pkey * maptofarm(chr(m)))] return enc # KEEP IT SECRET key = keygen(14) # I think 64**14 > 2**64 is not brute-forcible :P enc = encrypt(flag, key) print(f'enc = {enc}') ``` The key is the product of 14 random elements selected from $GF(64)$. ### Solution Note that the product of two elements of $GF(64)$ is still an element of $GF(64)$. Inductively, the key lies in $GF(64)$. That is, the key space is just 64 and hence we are able to brute-force the key. ### Implementation ```python #!/usr/bin/env sage import string import base64 enc = "805c9GMYuD5RefTmabUNfS9N9YrkwbAbdZE0df91uCEytcoy9FDSbZ8Ay8jj" ALPHABET = string.printable[:62] + '\\=' F = list(GF(64)) def farmtomap(f): assert f in F return ALPHABET[F.index(f)] def decrypt(msg, key): dec, pkey = '', key**5 + key**3 + key**2 + 1 for m in msg: dec += farmtomap(F[ALPHABET.index(m)] / pkey) return base64.b64decode(dec) for possible_key in F: try: plaintext = decrypt(enc, possible_key) if b"CCTF{" in plaintext: print(plaintext.decode()) except: continue ``` ## Salt and Pepper ### Challenge ```python= #!/usr/bin/env python3 from hashlib import md5, sha1 import sys from secret import salt, pepper from flag import flag assert len(salt) == len(pepper) == 19 assert md5(salt).hexdigest() == '5f72c4360a2287bc269e0ccba6fc24ba' assert sha1(pepper).hexdigest() == '3e0d000a4b0bd712999d730bc331f400221008e0' def auth_check(salt, pepper, username, password, h): return sha1(pepper + password + md5(salt + username).hexdigest().encode('utf-8')).hexdigest() == h def die(*args): pr(*args) quit() def pr(*args): s = " ".join(map(str, args)) sys.stdout.write(s + "\n") sys.stdout.flush() def sc(): return sys.stdin.readline().strip() def main(): border = "+" pr(border*72) pr(border, " welcome to hash killers battle, your mission is to login into the ", border) pr(border, " ultra secure authentication server with provided information!! ", border) pr(border*72) USERNAME = b'n3T4Dm1n' PASSWORD = b'P4s5W0rd' while True: pr("| Options: \n|\t[L]ogin to server \n|\t[Q]uit") ans = sc().lower() if ans == 'l': pr('| send your username, password as hex string separated with comma: ') inp = sc() try: inp_username, inp_password = [bytes.fromhex(s) for s in inp.split(',')] except: die('| your input is not valid, bye!!') pr('| send your authentication hash: ') inp_hash = sc() if USERNAME in inp_username and PASSWORD in inp_password: if auth_check(salt, pepper, inp_username, inp_password, inp_hash): die(f'| Congrats, you are master in hash killing, and it is the flag: {flag}') else: die('| your credential is not valid, Bye!!!') else: die('| Kidding me?! Bye!!!') elif ans == 'q': die("Quitting ...") else: die("Bye ...") if __name__ == '__main__': main() ``` We send a username and password to the server, along with an authentication hash. These are all passed as parameters to the `auth_check` function, and the username contains`n3T4Dm1n`, the password contains `P4s5W0rd`, and the function returns true, we get the flag. ### Solution The `check_auth` function uses two secrets, `salt` and `pepper`, which we know the length of, however we don't know the value of. The `check_auth` function calculates the authentication hash using the following line ```py sha1(pepper + password + md5(salt + username).hexdigest().encode('utf-8')).hexdigest() ``` Since these two secrets are hashed as well as our username and password, we cannot directly work out the authentication hash. However, we get given the MD5 hash of `salt`, and the SHA1 hash of `pepper`. Since both of the secret values are put as prefixes to our input, we can perform a hash length extension attack. [HashPump](https://github.com/bwall/HashPump) is a useful tool to do this, as all we need to do is provide the parameters and the tool does most of the work for us. One thing that needed to be changed however is that since we get the raw hashes, we don't have any data to give to the tool, and Hashpump complains when we do that. To get around this, I simply removed this check in the `main.cpp` file (line 255) and recompiled it. First, we will create a MD5 of (`salt` + `padding` + `n3T4Dm1n`) using the tool: ``` hashpump -s "5f72c4360a2287bc269e0ccba6fc24ba" -d "" -a "n3T4Dm1n" -k 19 ``` giving an output of ``` 95623660d3d04c7680a52679e35f041c \x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x98\x00\x00\x00\x00\x00\x00\x00n3T4Dm1n ``` Then, we will create our authentication hash by creating a SHA1 of (`pepper` + `padding` + `P4s5W0rd` + `95623660d3d04c7680a52679e35f041c`) ``` hashpump -s "3e0d000a4b0bd712999d730bc331f400221008e0" -d "" -a "P4s5W0rd95623660d3d04c7680a52679e35f041c" -k 19 ``` giving an output of ``` 83875efbe020ced3e2c5ecc908edc98481eba47f \x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x98P4s5W0rd95623660d3d04c7680a52679e35f041c ``` **83875efbe020ced3e2c5ecc908edc98481eba47f** should now be our authentication hash when we use `\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x98\x00\x00\x00\x00\x00\x00\x00n3T4Dm1n` as our username and `\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x98P4s5W0rd` as our password (note that we remove the MD5 hash at the end as it gets added when the `auth_check` function is called). Submitting these to the server gives us the flag. ## RSAphantine ### Challenge [RSA](https://cryp.toc.tf/tasks/RSAphantine_b1f2e30c7e90cfacb9ef4d0b5ce80abe33d1eb08.txz) and solving equations, but should be a real mathematician to solve it with a diophantine equation? ```python= 2*z**5 - x**3 + y*z = 47769864706750161581152919266942014884728504309791272300873440765010405681123224050402253883248571746202060439521835359010439155922618613520747411963822349374260144229698759495359592287331083229572369186844312169397998958687629858407857496154424105344376591742814310010312178029414792153520127354594349356721 x**4 + y**5 + x*y*z = 89701863794494741579279495149280970802005356650985500935516314994149482802770873012891936617235883383779949043375656934782512958529863426837860653654512392603575042842591799236152988759047643602681210429449595866940656449163014827637584123867198437888098961323599436457342203222948370386342070941174587735051 y**6 + 2*z**5 + z*y = 47769864706750161581152919266942014884728504309791272300873440765010405681123224050402253883248571746202060439521835359010439155922618613609786612391835856376321085593999733543104760294208916442207908167085574197779179315081994735796390000652436258333943257231020011932605906567086908226693333446521506911058 p = nextPrime(x**2 + z**2 + y**2 << 76) q = nextPrime(z**2 + y**3 - y*x*z ^ 67) n, e = p * q, 31337 m = bytes_to_long(FLAG) c = pow(m, e, n) c = 486675922771716096231737399040548486325658137529857293201278143425470143429646265649376948017991651364539656238516890519597468182912015548139675971112490154510727743335620826075143903361868438931223801236515950567326769413127995861265368340866053590373839051019268657129382281794222269715218496547178894867320406378387056032984394810093686367691759705672 ``` ### Solution This challenge gives us the following set of three equations and three unknowns $x$, $y$, and $z$; it then generates parameters for RSA encryption using the following equations: $$p = nextPrime(\frac{x^2+y^2+z^2}{2^{76}})\\ q = nextPrime(z^2+y^3- (xyz \oplus 67))$$ It doesn't look like we can attack the equations for $p$ or $q$ directly, so we solve the diophantine equations first: $$2z^5-x^3+yz=47769... = a\\ x^4+y^5+xyz=89701... = b\\ y^6+2z^5+yz=47769... = c$$ Note that while the right hand side of the first and third equations appear to be the same, they are different numbers. We first compute $c-a = x^3+y^6 = (x+y^2)(x^2-xy^2+y^4)$ by sum of cubes; factoring $c-a$, we recover the factors $3133713317731333$ and $28413320364759425...$. Plugging the equations into z3, we solve for $x$, $y$, and $z$: ```python= from z3 import * from sympy import * A = 3133713317731333 B = 28413320364759425177418147555143516002041291710972733253944530195017276664069717887927099709630886727522090965378073004342203980057853092114878433424202989 c = 486675922771716096231737399040548486325658137529857293201278143425470143429646265649376948017991651364539656238516890519597468182912015548139675971112490154510727743335620826075143903361868438931223801236515950567326769413127995861265368340866053590373839051019268657129382281794222269715218496547178894867320406378387056032984394810093686367691759705672 x = Int("x") y = Int("y") z = Int("z") s = Solver() s.add(y**2 + x == A) s.add(y**4 - x*y**2 + x**2 == B) s.add(y>0) s.add(2*z**5 - x**3 + y*z == 47769864706750161581152919266942014884728504309791272300873440765010405681123224050402253883248571746202060439521835359010439155922618613520747411963822349374260144229698759495359592287331083229572369186844312169397998958687629858407857496154424105344376591742814310010312178029414792153520127354594349356721) s.add(x**4 + y**5 + x*y*z == 89701863794494741579279495149280970802005356650985500935516314994149482802770873012891936617235883383779949043375656934782512958529863426837860653654512392603575042842591799236152988759047643602681210429449595866940656449163014827637584123867198437888098961323599436457342203222948370386342070941174587735051) s.add(y**6 + 2*z**5 + z*y == 47769864706750161581152919266942014884728504309791272300873440765010405681123224050402253883248571746202060439521835359010439155922618613609786612391835856376321085593999733543104760294208916442207908167085574197779179315081994735796390000652436258333943257231020011932605906567086908226693333446521506911058) if s.check() == sat: m = s.model() x = m[x].as_long() y = m[y].as_long() z = m[z].as_long() p = nextprime(x**2 + z**2 + y**2 << 76) q = nextprime(z**2 + y**3 - y*x*z ^ 67) d = pow(31337, -1, (p-1)*(q-1)) print(bytes.fromhex(hex(pow(c, d, p*q))[2:]).decode()) ``` ##### Flag CCTF{y0Ur_jO8_C4l13D_Diophantine_An4LySI5!} ## Triplet ### Challenge ```python= #!/usr/bin/env python3 from Crypto.Util.number import * from random import randint import sys from flag import FLAG def die(*args): pr(*args) quit() def pr(*args): s = " ".join(map(str, args)) sys.stdout.write(s + "\n") sys.stdout.flush() def sc(): return sys.stdin.readline().strip() def main(): border = "+" pr(border*72) pr(border, " hi talented cryptographers, the mission is to find the three RSA ", border) pr(border, " modulus with the same public and private exponent! Try your chance!", border) pr(border*72) nbit = 160 while True: pr("| Options: \n|\t[S]end the three nbit prime pairs \n|\t[Q]uit") ans = sc().lower() order = ['first', 'second', 'third'] if ans == 's': P, N = [], [] for i in range(3): pr("| Send the " + order[i] + " RSA primes such that nbit >= " + str(nbit) + ": p_" + str(i+1) + ", q_" + str(i+1) + " ") params = sc() try: p, q = params.split(',') p, q = int(p), int(q) except: die("| your primes are not valid!!") if isPrime(p) and isPrime(q) and len(bin(p)[2:]) >= nbit and len(bin(q)[2:]) >= nbit: P.append((p, q)) n = p * q N.append(n) else: die("| your input is not desired prime, Bye!") if len(set(N)) == 3: pr("| Send the public and private exponent: e, d ") params = sc() try: e, d = params.split(',') e, d = int(e), int(d) except: die("| your parameters are not valid!! Bye!!!") phi_1 = (P[0][0] - 1)*(P[0][1] - 1) phi_2 = (P[1][0] - 1)*(P[1][1] - 1) phi_3 = (P[2][0] - 1)*(P[2][1] - 1) if 1 < e < min([phi_1, phi_2, phi_3]) and 1 < d < min([phi_1, phi_2, phi_3]): b = (e * d % phi_1 == 1) and (e * d % phi_2 == 1) and (e * d % phi_3 == 1) if b: die("| You got the flag:", FLAG) else: die("| invalid exponents, bye!!!") else: die("| the exponents are too small or too large!") else: die("| kidding me?!!, bye!") elif ans == 'q': die("Quitting ...") else: die("Bye ...") if __name__ == '__main__': main() ``` We need to send 3 pairs of primes followed by a keypair `e,d` so that `e,d` is a valid keypair for each modulus generated by each pair. Most easy solutions are patched out, as `e` and `d` both have to be less than the lowest phi and greater than 1. ### Solution Our main idea for this problem is to generate `phi_1`, `phi_2` and `phi_3` in a way so that `phi_2` is a multiple of `phi_1`, and `phi_3` is a multiple of `phi_2`. In this way, any valid keypair for `phi_3` (that also satisfies the length requirement) will also be a valid keypair for `phi_1` and `phi_2` and can be used to get the flag. We can generate primes as follows: ```py def phi(p,q): return (p-1) * (q-1) from random import randrange def genprime(baseprime): while True: k = randrange(2, 1000) p = baseprime * k + 1 if is_prime(p): return p p = random_prime(2^160) q = random_prime(2^160) r = genprime(p) s = genprime(q) t = genprime(r) u = genprime(s) phi_1 = phi(p,q) phi_2 = phi(r,s) phi_3 = phi(t,u) ``` Now all we need to do is generate a valid keypair for `phi_3`. To do this, recall that the values $e$ and $d$ satisfy the following equation: $$e * d \equiv 1 \mod \phi(n)$$ therefore $$e * d = 1 + k * \phi(n)$$ If we find factors of $1 + phi(n3)$, we should be able to find two numbers that are small enough to satisfy the length requirements, as the value $k$ in the equation $$\phi(n3) = k * \phi(n1)$$ should be small. We can just use something like [factordb](http://factordb.com/) for this. Once we do that, we submit everything to the server and get our flag. Example input: ``` 1016528131013635090619361217720494946552931485213,1429584882448210886669728733194710184148915763157 6211546314237476302579971345731015750127038990912821,8860059189914843449838352373651833954155350825107793 9404281119755539122106076617436757845692337032242009481,24063920759808714809760965046838381019485932840992763073 43589288709210633359625764026901174390804401096987086682930362519465081895858044399533,5191731325979249818708517 ``` ## Rami ### Challenge ```python= #!/usr/bin/env python3 from Crypto.Util.number import * from flag import FLAG def nextPrime(n): while True: n += (n % 2) + 1 if isPrime(n): return n f = [int(x) for x in bin(int(FLAG.hex(), 16))[2:]] f.insert(0, 0) for i in range(len(f)-1): f[i] += f[i+1] a = nextPrime(len(f)) b = nextPrime(a) g, h = [[_ for i in range(x) for _ in f] for x in [a, b]] c = nextPrime(len(f) >> 2) for _ in [g, h]: for __ in range(c): _.insert(0, 0) for i in range(len(_) - c): _[i] += _[i+c] g, h = [int(''.join([str(_) for _ in __]), 5) for __ in [g, h]] for _ in [g, h]: if _ == g: fname = 'g' else: fname = 'h' of = open(f'{fname}.enc', 'wb') of.write(long_to_bytes(_)) of.close() ``` The flag is encoded using a bunch of weird looking operations, and then we get the two files `g.enc` and `h.enc` ### Solution Firstly, we can deduce the flag length as 32 bytes by simply testing some letter repeated some number of times as the flag, then checking the length of the output and comparing it to the size of `g.enc`. We will work through the steps in reverse order. #### Step 1 ```python= g, h = [int(''.join([str(_) for _ in __]), 5) for __ in [g, h]] for _ in [g, h]: if _ == g: fname = 'g' else: fname = 'h' of = open(f'{fname}.enc', 'wb') of.write(long_to_bytes(_)) of.close() ``` Firstly, each file contains bytes, which we need to convert to a base 10 integer. Then, we need to convert this base 10 integer into a base 5 integer. We can do this quite easily with `gmpy2`'s `digits` function. #### Step 2 ```python= c = nextPrime(len(f) >> 2) for _ in [g, h]: for __ in range(c): _.insert(0, 0) for i in range(len(_) - c): _[i] += _[i+c] ``` These next steps add some elements of the list to other elements of the list. We can work out the value of `len(_) - c` by just running the program with a random 32 byte flag, and then to reverse it, we just need to ensure that we change the addition to subtraction, and work in reverse order, as the later elements of the list are not affected by the earlier ones (but not vice versa). We also then need to trim $c$ amound of 0's from the start of the list at the end. $c$ can again be worked out by just running the program. #### Step 3 ```python= a = nextPrime(len(f)) b = nextPrime(a) g, h = [[_ for i in range(x) for _ in f] for x in [a, b]] ``` This step simply takes the list $f$ and duplicates it $a$ and $b$ times, storing them in $g$ and $h$. We can either manually find the repeating sequence, work out the values of $a$ and $b$ and simply split $g$ into $a$ chunks (or $h$ into $b$ chunks), or we can simply know the length of $f$, and take the first $len(f)$ elements of $g$ to get the original $f$. #### Step 4 ```python= f = [int(x) for x in bin(int(FLAG.hex(), 16))[2:]] f.insert(0, 0) for i in range(len(f)-1): f[i] += f[i+1] ``` Our last step is again quite similar to step 2, we work out the length of $f$ by running the program, and then going in reverse order, changing the addition to a subtraction instead. We can then obtain the flag by converting the list into a string, which should be the binary string of the flag. ### Implementation Putting this all together, this looks like this: ```python= from gmpy2 import digits # Step 1 g = list(digits(bytes_to_long(open("g.enc","rb").read()) ,5)) g = [int(x) for x in g] # Step 2 for _ in [g]: for i in range(65791,-1,-1): _[i] -= _[i+c] # Step 3 f = g[67:67+256] f = [int(x) for x in f] # Step 4 for i in range(len(f)-2, -1, -1):f[i] -= f[i+1] print("".join([str(x) for x in f])) ```

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully