Janice Chiang
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    ###### tags: `AFS` # AFS API 說明文件 <sup style="color:gray">V5, 更新時間: 2024/07/12 13:00</b></sup> ## 取得所需資訊 :::spoiler **AFS ModelSpace 公有模式(Public Mode)** 1. **`API URL`**:請從 AFS ModelSpace 的 **公用模式 - API 金鑰管理** 頁面中的右上角複製。 ![image](https://hackmd.io/_uploads/rkl3a6Vb0.png) ![image](https://hackmd.io/_uploads/BJWCQerW0.png) 3. **`MODEL_NAME`**:請參考 [**模型名稱對照表**](https://docs.twcc.ai/docs/user-guides/twcc/afs/afs-modelspace/available-model)。 4. **`API_KEY`**: 請從 **公用模式 - API 金鑰管理** 頁面的列表中取得。 ::: :::spoiler **AFS ModelSpace 私有模式(Private Mode)** 1. **`API_URL`**:**`API 端點連結`**,可從該服務的詳細資料頁面中複製。 ![image](https://hackmd.io/_uploads/r1EfvzHx0.png) 2. **`MODEL_NAME`**:**`模型名稱`**,如上圖,可從該服務的詳細資料頁面中複製。 3. **`API_KEY`**:{API_KEY},登入該服務的測試介面後點選右上角的帳號資訊,即可看到 `API 金鑰`。 ![](https://hackmd.io/_uploads/rkCFhkFF2.png)<br><br> ::: :::spoiler **AFS Cloud** 1. **`API_URL`**:**`API 端點連結`**,可從該服務的詳細資料頁面中複製。 ![image](https://hackmd.io/_uploads/r1EfvzHx0.png) 2. **`MODEL_NAME`**:**`模型名稱`**,如上圖,可從該服務的詳細資料頁面中複製。 3. **`API_KEY`**:{API_KEY},登入該服務的測試介面後點選右上角的帳號資訊,即可看到 `API 金鑰`。 ![](https://hackmd.io/_uploads/rkCFhkFF2.png)<br><br> ::: ## 參數說明 ### Request 參數 - `max_new_tokens`:一次最多可生成的 token 數量。 - 預設值:350 - 範圍限制:大於 0 的整數值 ::: warning :warning: **注意:使用限制** 每個模型都有 input + output token 小於某個值的限制,如果輸入字串加上預計生成文字的 token 數量大於該值則會產生錯誤。 - Mistral (7B) / Mixtral (8x7B) : 32768 tokens - Llama3 (8B / 70B) : 8192 tokens - Llama2-V2 / Llama2 (7B / 13B / 70B) / Taide-LX (7B) : 4096 tokens - CodeLlama (7B / 13B / 34B) : 8192 tokens ::: - `temperature`:生成創造力,生成文本的隨機和多樣性。值越大,文本更具創意和多樣性;值越小,則較保守、接近模型所訓練的文本。 - 預設值:1.0 - 範圍限制:大於 0 的小數值 - `top_p`:當候選 token 的累計機率達到或超過此值時,就會停止選擇更多的候選 token。值越大,生成的文本越多樣化;值越小,生成的文本越保守。 - 預設值:1.0 - 範圍限制:大於 0 且小於等於 1 的小數值 - `top_k`:限制模型只從具有最高概率的 K 個 token 中進行選擇。值越大,生成文本越多樣化;值越小,生成的文本越保守。 - 預設值:50 - 範圍限制:大於等於 1 且小於等於 100 的整數值 - `frequence_penalty`:重複懲罰,控制重複生成 token 的概率。值越大,重複 token 出現次數將降低。 - 預設值:1.0 - 範圍限制:大於 0 的小數值 - `stop_sequences`:當文字生成內容遇到以下序列即停止,而輸出內容不會納入序列。 - 預設值:無 - 範圍限制:最多四組,例如 ["stop", "end"] - `show_probabilities`:是否顯示生成文字的對數機率。其值為依據前面文字來生成該 token 的機率, 以對數方式呈現。 - 預設值:false - 範圍限制:true 或是 false - `seed`:亂數種子,具有相同種子與參數的重複請求會傳回相同結果。若設成 null,表示隨機。 - 預設值:42 - 範圍限制:可設為 null,以及大於等於 0 的整數值 ### Request 參數調校建議 * `temperature` 的調整影響回答的創意性。 - 單一/非自創的回答,建議調低 temperature 至 0.1~0.2。 - 多元/高創意的回答,建議調高 temperature 至 1。 * 若上述調整後仍想再微調 `top-k` 和 `top-p`,請先調整 `top-k`,最後再更動 `top-p`。 * 當回答中有高重複的 token,重複懲罰數值 `frequence_penalty` 建議調至 1.03,最高 1.2,再更高會有較差的效果。 ### Response 參數 - `function_call`:模型回覆的 Function Calling 呼叫函式,若無使用此功能則回傳 null。 - `details`:針對特定需求所提供的細節資訊,例如 response 參數的 show_probabilities 若為 true,details 會回傳生成文字的對數機率。 - `total_time_taken`:本次 API 的總花費秒數。 - `prompt_tokens`:本次 API 的 Prompt Token 數量(Input Tokens),會包含 system 預設指令、歷史對話中 human / assistant 的內容以及本次的問題或輸入內容的總 Token 數。 - `generated_tokens`:本次 API 的 Generated Token 數量(Output Tokens),即為本次模型的回覆內容總 Token 數,而此 Token 數量越大,對應的總花費秒數也會隨之增長。(若有輸出大量 token 文字的需求,請務必優先採用 Stream 模式,以免遇到 Timeout 的情形。) - `total_tokens`:本次 API 的 Total Token 數量 (Input + Output Tokens)。 - `finish_reason`:本次 API 的結束原因說明,例如 "eos\_token" 代表模型已生成完畢,"function\_call" 代表呼叫函式已生成完畢。 ## Conversation ::: info :bulb: **提示:** 支援模型清單 * Mistral (7B) / Mixtral (8x7B)  * Llama3 (8B / 70B) * Llama2-V2 / Llama2 (7B / 13B / 70B) / Taide-LX (7B) * CodeLlama (7B / 13B / 34B) ::: ### 一般使用 依對話順序,依照角色位置把對話內容填到 Content 欄位中。 - [**範例一**](#範例一:無`預設指令`) | Role | Order | Content | | --------- | ----- | ------- | | human | 問題1 | 人口最多的國家是? | | assistant | 答案1 | 人口最多的國家是印度。 | | human | 問題2 | 主要宗教為? | - [**範例二**](#範例二:設定`預設指令`) | Role | Order | Content | | --------- | ------- | ------- | | system | 預設指令 | 你是一位只會用表情符號回答問題的助理。 | | human | 問題1 | 明天會下雨嗎? | | assistant | 答案1 | 🤔 🌨️ 🤞 | | human | 問題2 | 意思是要帶傘出門嗎? | ::: info :bulb: **提示:** LLaMA 2 支援預設指令。預設指令可以協助優化系統的回答行為,在對話的每一段過程中都會套用。 ::: #### 範例一:無`預設指令` ```bash= export API_KEY={API_KEY} export API_URL={API_URL} export MODEL_NAME={MODEL_NAME} # model: ffm-mixtral-8x7b-32k-instruct curl "${API_URL}/models/conversation" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "messages":[ { "role": "human", "content": "人口最多的國家是?" }, { "role": "assistant", "content": "人口最多的國家是印度。" }, { "role": "human", "content": "主要宗教為?" }], "parameters": { "max_new_tokens":350, "temperature":0.5, "top_k":50, "top_p":1, "frequence_penalty":1}}' ``` 輸出:包括生成的文字、token 個數以及所花費的時間秒數。 > { "generated_text": "印度的主要宗教是印度教", "function_call": null, "details": null, "total_time_taken": "1.31 sec", "prompt_tokens": 44, "generated_tokens": 13, "total_tokens": 57, "finish_reason": "eos_token" } :::spoiler Python 範例 ```python= import json import requests MODEL_NAME = "{MODEL_NAME}" API_KEY = "{API_KEY}" API_URL = "{API_URL}" API_HOST = "afs-inference" # parameters max_new_tokens = 350 temperature = 0.5 top_k = 50 top_p = 1.0 frequence_penalty = 1.0 def conversation(contents): headers = { "content-type": "application/json", "X-API-Key": API_KEY, "X-API-Host": API_HOST} roles = ["human", "assistant"] messages = [] for index, content in enumerate(contents): messages.append({"role": roles[index % 2], "content": content}) data = { "model": MODEL_NAME, "messages": messages, "parameters": { "max_new_tokens": max_new_tokens, "temperature": temperature, "top_k": top_k, "top_p": top_p, "frequence_penalty": frequence_penalty } } result = "" try: response = requests.post(API_URL + "/models/conversation", json=data, headers=headers) if response.status_code == 200: result = json.loads(response.text, strict=False)['generated_text'] else: print("error") except: print("error") return result.strip("\n") contents = ["人口最多的國家是?", "人口最多的國家是印度。", "主要宗教為?"] result = conversation(contents) print(result) ``` 輸出: > 印度的主要宗教是印度教 ::: #### 範例二:設定`預設指令` ```bash= export API_KEY={API_KEY} export API_URL={API_URL} export MODEL_NAME={MODEL_NAME} # model: ffm-mixtral-8x7b-32k-instruct curl "${API_URL}/models/conversation" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "messages":[ { "role": "system", "content": "你是一位只會用表情符號回答問題的助理。" }, { "role": "human", "content": "明天會下雨嗎?" }, { "role": "assistant", "content": "🤔 🌨️ 🤞" }, { "role": "human", "content": "意思是要帶傘出門嗎?" }], "parameters": { "max_new_tokens":350, "temperature":0.5, "top_k":50, "top_p":1, "frequence_penalty":1}}' ``` 輸出:包括生成的文字、token 個數以及所花費的時間秒數。 > { "generated_text": "🌂 🌂 🌂\n\n(譯:明天會下雨,所以最好帶把傘出門。)", "function_call": null, "details": null, "total_time_taken": "3.55 sec", "prompt_tokens": 76, "generated_tokens": 38, "total_tokens": 114, "finish_reason": "eos_token" } :::spoiler Python 範例 ```python= import json import requests MODEL_NAME = "{MODEL_NAME}" API_KEY = "{API_KEY}" API_URL = "{API_URL}" API_HOST = "afs-inference" # parameters max_new_tokens = 350 temperature = 0.5 top_k = 50 top_p = 1.0 frequence_penalty = 1.0 def conversation(system, contents): headers = { "content-type": "application/json", "X-API-Key": API_KEY, "X-API-Host": API_HOST} roles = ["human", "assistant"] messages = [] if system is not None: messages.append({"role": "system", "content": system}) for index, content in enumerate(contents): messages.append({"role": roles[index % 2], "content": content}) data = { "model": MODEL_NAME, "messages": messages, "parameters": { "max_new_tokens": max_new_tokens, "temperature": temperature, "top_k": top_k, "top_p": top_p, "frequence_penalty": frequence_penalty } } result = "" try: response = requests.post(API_URL + "/models/conversation", json=data, headers=headers) if response.status_code == 200: result = json.loads(response.text, strict=False)['generated_text'] else: print("error") except: print("error") return result.strip("\n") system_prompt = "你是一位只會用表情符號回答問題的助理。" contents = ["明天會下雨嗎?", "🤔 🌨️ 🤞", "意思是要帶傘出門嗎?"] result = conversation(system_prompt, contents) print(result) ``` 輸出: > 🌂 🌂 🌂 (譯:明天會下雨,所以最好帶把傘出門。) ::: ```bash= export API_KEY={API_KEY} export API_URL={API_URL} export MODEL_NAME={MODEL_NAME} # model: ffm-mixtral-8x7b-32k-instruct curl "${API_URL}/models/conversation" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "messages":[ { "role": "system", "content": "你是一個活潑的五歲小孩,回答問題時都使用童言童語的語氣。" }, { "role": "human", "content": "明天會下雨嗎?" }, { "role": "assistant", "content": "嗯,我不知道,但我希望如此!我喜歡玩雨水,穿上我的雨靴和雨衣。這就像一個大派對外面!如果你很幸運,也許你可以看到一個彩虹!" }, { "role": "human", "content": "彩虹有幾種顏色呢?" }], "parameters": { "max_new_tokens":350, "temperature":0.5, "top_k":50, "top_p":1, "frequence_penalty":1}}' ``` 輸出:包括生成的文字、token 個數以及所花費的時間秒數。 > { "generated_text": "彩虹有七種顏色!你能記得住它們嗎?它們是紅色、橙色、黃色、綠色、藍色、靛色和紫色。這是一個有趣的記憶法:“藍色是靛色的,紫色是我的,綠色是我喜歡的,黃色是太陽,橙色是甜美的,紅色是勇敢的。”試試看,這樣就很容易記住了!", "function_call": null, "details": null, "total_time_taken": "15.00 sec", "prompt_tokens": 133, "generated_tokens": 111, "total_tokens": 244, "finish_reason": "eos_token" } :::spoiler Python 範例 ```python= import json import requests MODEL_NAME = "{MODEL_NAME}" API_KEY = "{API_KEY}" API_URL = "{API_URL}" API_HOST = "afs-inference" # parameters max_new_tokens = 350 temperature = 0.5 top_k = 50 top_p = 1.0 frequence_penalty = 1.0 def conversation(system, contents): headers = { "content-type": "application/json", "X-API-Key": API_KEY, "X-API-Host": API_HOST} roles = ["human", "assistant"] messages = [] if system is not None: messages.append({"role": "system", "content": system}) for index, content in enumerate(contents): messages.append({"role": roles[index % 2], "content": content}) data = { "model": MODEL_NAME, "messages": messages, "parameters": { "max_new_tokens": max_new_tokens, "temperature": temperature, "top_k": top_k, "top_p": top_p, "frequence_penalty": frequence_penalty } } result = "" try: response = requests.post(API_URL + "/models/conversation", json=data, headers=headers) if response.status_code == 200: result = json.loads(response.text, strict=False)['generated_text'] else: print("error") except: print("error") return result.strip("\n") system_prompt = "你是一個活潑的五歲小孩,回答問題時都使用童言童語的語氣。" contents = ["明天會下雨嗎?", "嗯,我不知道,但我希望如此!我喜歡玩雨水,穿上我的雨靴和雨衣。這就像一個大派對外面!如果你很幸運,也許你可以看到一個彩虹!", "彩虹有幾種顏色呢?"] result = conversation(system_prompt, contents) print(result) ``` 輸出: > 彩虹有七種顏色!你能記得住它們嗎?它們是紅色、橙色、黃色、綠色、藍色、靛色和紫色。這是一個有趣的記憶法:“藍色是靛色的,紫色是我的,綠色是我喜歡的,黃色是太陽,橙色是甜美的,紅色是勇敢的。”試試看,這樣就很容易記住了! ::: ### 使用 Stream 模式 Server-sent event (SSE):伺服器主動向客戶端推送資料,連線建立後,在一步步生成字句的同時也將資料往客戶端拋送,和先前的一次性回覆不同,可加強使用者體驗。若有輸出大量 token 文字的需求,請務必優先採用 Stream 模式,以免遇到 Timeout 的情形。 ```bash= export API_KEY={API_KEY} export API_URL={API_URL} export MODEL_NAME={MODEL_NAME} # model: ffm-mixtral-8x7b-32k-instruct curl "${API_URL}/models/conversation" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "messages":[ { "role": "human", "content": "人口最多的國家是?" }, { "role": "assistant", "content": "人口最多的國家是印度。" }, { "role": "human", "content": "主要宗教為?" }], "parameters": { "max_new_tokens":350, "temperature":0.5, "top_k":50, "top_p":1, "frequence_penalty":1}, "stream": true}' ``` 輸出:每個 token 會輸出一筆資料,最末筆則是會多出生成的總 token 個數和所花費的時間秒數。 > data: {"generated_text": "", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "印", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "度", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "的", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "主", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "要", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "宗", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "教", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "是", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "印", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "度", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "教", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "", "function_call": null, "details": null, "total_time_taken": "1.32 sec", "prompt_tokens": 44, "generated_tokens": 13, "total_tokens": 57, "finish_reason": "eos_token"} ::: info :bulb: **提示:注意事項** 1. 每筆 token 並不一定能解碼成合適的文字,如果遇到該種情況,該筆 generated_text 欄位會顯示空字串,該 token 會結合下一筆資料再來解碼,直接能呈現為止。 2. 本案例採用 [sse-starlette](https://github.com/sysid/sse-starlette),在 SSE 過程中約 15 秒就會收到 ping event,目前在程式中如果連線大於該時間就會收到以下資訊 (非 JSON 格式),在資料處理時需特別注意,下列 Python 範例已經有包含此資料處理。 > event: ping > data: 2023-09-26 04:25:08.978531 ::: :::spoiler Python 範例 ```python= import json import requests MODEL_NAME = "{MODEL_NAME}" API_KEY = "{API_KEY}" API_URL = "{API_URL}" API_HOST = "afs-inference" # parameters max_new_tokens = 350 temperature = 0.5 top_k = 50 top_p = 1.0 frequence_penalty = 1.0 def conversation(contents): headers = { "content-type": "application/json", "X-API-Key": API_KEY, "X-API-Host": API_HOST} roles = ["human", "assistant"] messages = [] for index, content in enumerate(contents): messages.append({"role": roles[index % 2], "content": content}) data = { "model": MODEL_NAME, "messages": messages, "parameters": { "max_new_tokens": max_new_tokens, "temperature": temperature, "top_k": top_k, "top_p": top_p, "frequence_penalty": frequence_penalty }, "stream": True } messages = [] result = "" try: response = requests.post(API_URL + "/models/conversation", json=data, headers=headers, stream=True) if response.status_code == 200: for chunk in response.iter_lines(): chunk = chunk.decode('utf-8') if chunk == "": continue # only check format => data: ${JSON_FORMAT} try: record = json.loads(chunk[5:], strict=False) if "status_code" in record: print("{:d}, {}".format(record["status_code"], record["error"])) break elif record["total_time_taken"] is not None or ("finish_reason" in record and record["finish_reason"] is not None) : message = record["generated_text"] messages.append(message) print(">>> " + message) result = ''.join(messages) break elif record["generated_text"] is not None: message = record["generated_text"] messages.append(message) print(">>> " + message) else: print("error") break except: pass else: print("error") except: print("error") return result.strip("\n") contents = ["人口最多的國家是?", "人口最多的國家是印度。", "主要宗教為?"] result = conversation(contents) print(result) ``` 輸出: ``` >>> >>> 印 >>> 度 >>> 的 >>> 主 >>> 要 >>> 宗 >>> 教 >>> 是 >>> 印 >>> 度 >>> 教 >>> 印度的主要宗教是印度教 ``` ::: ### LangChain 使用方式 :::spoiler **Custom Chat Model Wrapper** ```python= """Wrapper LLM conversation APIs.""" from typing import Any, Dict, List, Mapping, Optional, Tuple from langchain.llms.base import LLM import requests from langchain.llms.utils import enforce_stop_tokens from langchain.llms.base import BaseLLM from langchain.llms.base import create_base_retry_decorator from pydantic import BaseModel, Extra, Field, root_validator from langchain.chat_models.base import BaseChatModel from langchain.schema.language_model import BaseLanguageModel from langchain.schema import ( BaseMessage, ChatGeneration, ChatResult, ChatMessage, AIMessage, HumanMessage, SystemMessage ) from langchain.callbacks.manager import ( Callbacks, AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) import json import os class _ChatFormosaFoundationCommon(BaseLanguageModel): base_url: str = "http://localhost:12345" """Base url the model is hosted under.""" model: str = "ffm-mixtral-8x7b-32k-instruct" """Model name to use.""" temperature: Optional[float] """The temperature of the model. Increasing the temperature will make the model answer more creatively.""" stop: Optional[List[str]] """Sets the stop tokens to use.""" top_k: int = 50 """Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 50)""" top_p: float = 1 """Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 1)""" max_new_tokens: int = 350 """The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size.""" frequence_penalty: float = 1 """Penalizes repeated tokens according to frequency.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" ffm_api_key: Optional[str] = None @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling FFM API.""" normal_params = { "temperature": self.temperature, "max_new_tokens": self.max_new_tokens, "top_p": self.top_p, "frequence_penalty": self.frequence_penalty, "top_k": self.top_k, } return {**normal_params, **self.model_kwargs} def _call( self, prompt, stop: Optional[List[str]] = None, **kwargs: Any, ) -> str: if self.stop is not None and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop is not None: stop = self.stop elif stop is None: stop = [] params = {**self._default_params, "stop": stop, **kwargs} parameter_payload = {"parameters": params, "messages": prompt, "model": self.model} # HTTP headers for authorization headers = { "X-API-KEY": self.ffm_api_key, "X-API-HOST": "afs-inference", "Content-Type": "application/json", } endpoint_url = f"{self.base_url}/models/conversation" # send request try: response = requests.post( url=endpoint_url, headers=headers, data=json.dumps(parameter_payload, ensure_ascii=False).encode("utf8"), stream=False, ) response.encoding = "utf-8" generated_text = response.json() if response.status_code != 200: detail = generated_text.get("detail") raise ValueError( f"FormosaFoundationModel endpoint_url: {endpoint_url}\n" f"error raised with status code {response.status_code}\n" f"Details: {detail}\n" ) except requests.exceptions.RequestException as e: # This is the correct syntax raise ValueError(f"FormosaFoundationModel error raised by inference endpoint: {e}\n") if generated_text.get("detail") is not None: detail = generated_text["detail"] raise ValueError( f"FormosaFoundationModel endpoint_url: {endpoint_url}\n" f"error raised by inference API: {detail}\n" ) if generated_text.get("generated_text") is None: raise ValueError( f"FormosaFoundationModel endpoint_url: {endpoint_url}\n" f"Response format error: {generated_text}\n" ) return generated_text class ChatFormosaFoundationModel(BaseChatModel, _ChatFormosaFoundationCommon): """`FormosaFoundation` Chat large language models API. The environment variable ``OPENAI_API_KEY`` set with your API key. Example: .. code-block:: python ffm = ChatFormosaFoundationModel(model_name="llama2-7b-chat-meta") """ @property def _llm_type(self) -> str: return "ChatFormosaFoundationModel" @property def lc_serializable(self) -> bool: return True def _convert_message_to_dict(self, message: BaseMessage) -> dict: if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "human", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} else: raise ValueError(f"Got unknown type {message}") return message_dict def _create_conversation_messages( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params: Dict[str, Any] = {**self._default_params} if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [self._convert_message_to_dict(m) for m in messages] return message_dicts, params def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: chat_generation = ChatGeneration( message = AIMessage(content=response.get("generated_text")), generation_info = { "token_usage": response.get("generated_tokens"), "model": self.model } ) return ChatResult(generations=[chat_generation]) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} response = self._call(prompt=message_dicts) if type(response) is str: # response is not the format of dictionary return response return self._create_chat_result(response) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None ) -> ChatResult: pass def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = self._default_params if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [self._convert_message_to_dict(m) for m in messages] return message_dicts, params ``` ::: * 完成以上封裝後,就可以在 LangChain 中使用特定的 FFM 大語言模型。 ::: info :bulb: **提示:** 更多資訊,請參考 [**LangChain Custom LLM 文件**](https://python.langchain.com/docs/modules/model_io/models/llms/custom_llm)。 ::: ```python= MODEL_NAME = "{MODEL_NAME}" API_KEY = "{API_KEY}" API_URL = "{API_URL}" from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) chat_ffm = ChatFormosaFoundationModel( base_url = API_URL, max_new_tokens = 350, temperature = 0.5, top_k = 50, top_p = 1.0, frequence_penalty = 1.0, ffm_api_key = API_KEY, model = MODEL_NAME ) messages = [ HumanMessage(content="人口最多的國家是?"), AIMessage(content="人口最多的國家是印度。"), HumanMessage(content="主要宗教為?") ] result = chat_ffm(messages) print(result.content) ``` 輸出: > 印度的主要宗教是印度教 ## Function Calling  在 API 呼叫中,您可以描述多個函式讓模型選擇,並輸出包含選中的函數名稱及參數的 JSON Object,讓應用或代理人程式調用模型選擇的函式。Conversation API 不會調用該函式而是生成 JSON 讓您可在代碼中調用函式。 ::: info :bulb: **提示:** 支援模型清單 * Mistral (7B) / Mixtral (8x7B)  * Llama2-V2 (7B / 13B / 70B)  ::: ### 使用方式 1. 開發者提供函式列表並對大語言模型輸入問題。 2. 開發者解析大語言模型輸出的結構化資料,取得函式與對應的參數後,讓應用或代理人程式呼叫 API 並獲得回傳的結果。 3. 將 API 回傳的結果放到對話內容並傳給大語言模型做總結。 ### Conversation API 給定包含對話的訊息列表,模型將回傳生成訊息或呼叫函式。 1. 開發者提供函式列表並對大語言模型輸入問題 | Field | Type | Required | Description | | -------- | -------- | -------- | -------- | | **functions** | array | Optional | A list of functions the model may generate JSON inputs for.| * Example of RESTful HTTP Request ```python= export API_KEY={API_KEY} export API_URL={API_URL} export MODEL_NAME={MODEL_NAME} curl -X POST "${API_URL}/models/conversation" \ -H "accept: application/json" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "messages": [ { "role": "user", "content": "What is the weather like in Boston?" }], "functions": [ { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] } }, "required": ["location"] } }], "parameters": { "show_probabilities": false, "max_new_tokens": 500, "frequence_penalty": 1, "temperature": 0.5, "top_k": 100, "top_p": 0.93 }, "stream": false }' ``` | Field | Type | Required | Description | | -------- | -------- | -------- | -------- | |**function_call** | string or object | Optional | JSON format that adheres to the function signature | * Example of RESTful HTTP Response ```python= { "generated_text": "", "function_call": { "name": "get_current_weather", "arguments": { "location": "Boston, MA", } }, "details":null, "total_time_taken": "1.18 sec", "prompt_tokens": 181, "generated_tokens": 45, "total_tokens": 226, "finish_reason": "function_call" } ``` 2. 開發者解析大語言模型輸出的結構化資料,取得函式與對應的參數後,呼叫 API 並獲得回傳的結果 * Example of Weather API Response ```python= { "temperature": "22", "unit": "celsius", "description": "Sunny" } ``` 3. 將 API 回傳的結果放到對話內容並傳給大語言模型做總結 | Field |value | | -------- | -------- | |**role** | ***function*** | |**name** | The function name to call | |**content** | The response message from the API | * Example of RESTful HTTP Request ```python= export API_KEY={API_KEY} export API_URL={API_URL} export MODEL_NAME={MODEL_NAME} curl -X POST "${API_URL}/models/conversation" \ -H "accept: application/json" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "messages": [ {"role": "user", "content": "What is the weather like in Boston?"}, {"role": "assistant", "content": null, "function_call": {"name": "get_current_weather", "arguments": {"location": "Boston, MA"}}}, {"role": "function", "name": "get_current_weather", "content": "{\"temperature\": \"22\", \"unit\": \"celsius\", \"description\": \"Sunny\"}"} ], "functions": [ { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] } }, "required": ["location"] } }], "parameters": { "show_probabilities": false, "max_new_tokens": 500, "frequence_penalty": 1, "temperature": 0.5, "top_k": 100, "top_p": 0.93 }, "stream": false }' ``` * Example of RESTful HTTP Response > { > "generated_text":" The current weather in Boston is sunny with a temperature of 22 degrees Celsius. ", > "details":null, > "total_time_taken":"0.64 sec", > "prompt_tokens":230, > "generated_tokens":23, > "total_tokens":253, > "finish_reason":"eos_token" > } ## Code Infilling ### 一般使用 基於給定程式碼前後文來預測程式中要填補的段落,以 `<FILL_ME>` 標籤當成要填補的部分,實際應用會是在開發環境 (IDE) 中自動完成程式中缺漏或是待完成的程式碼區段。 :::info :bulb: **提示:注意事項** - 目前僅 meta-codellama-7b-instruct 及 meta-codellama-13b-instruct 模型支援 Code Infilling,若使用的模型不支援,API 會回傳錯誤訊息。 - 如果輸入內容包含多個 `<FILL_ME>`,API 會回傳錯誤訊息。 ::: ```bash= export API_KEY={API_KEY} export API_URL={API_URL} export MODEL_NAME={MODEL_NAME} # model: meta-codellama-7b-instruct curl "${API_URL}/models/text_infilling" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "inputs":"def remove_non_ascii(s: str) -> str:\n \"\"\" <FILL_ME>\n return result\n", "parameters":{ "max_new_tokens":43, "temperature":0.1, "top_k":50, "top_p":1, "frequence_penalty":1}}' ``` 輸出:取代 `<FILL_ME>` 的程式片段、token 個數以及所花費的時間秒數。 ```json { "generated_text": "Remove non-ASCII characters from a string. \"\"\"\n result = \"\"\n for c in s:\n if ord(c) < 128:\n result += c\n ", "function_call": null, "details": null, "total_time_taken": "0.99 sec", "prompt_tokens": 27, "generated_tokens": 43, "total_tokens": 70, "finish_reason": "length" } ``` :::spoiler Python 範例 ```python= import json import requests, re MODEL_NAME = "{MODEL_NAME}" API_KEY = "{API_KEY}" API_URL = "{API_URL}" API_HOST = "afs-inference" # parameters max_new_tokens = 43 temperature = 0.1 top_k = 50 top_p = 1.0 frequence_penalty = 1.0 def text_infilling(prompt): headers = { "content-type": "application/json", "X-API-Key": API_KEY, "X-API-Host": API_HOST} data = { "model": MODEL_NAME, "inputs": prompt, "parameters": { "max_new_tokens": max_new_tokens, "temperature": temperature, "top_k": top_k, "top_p": top_p, "frequence_penalty": frequence_penalty } } result = '' try: response = requests.post( API_URL + "/models/text_infilling", json=data, headers=headers) if response.status_code == 200: result = json.loads(response.text, strict=False)['generated_text'] else: print("error") except: print("error") return result.strip("<EOT>") text = '''def remove_non_ascii(s: str) -> str: """ <FILL_ME> return result ''' result = text_infilling(text) print(re.sub("<FILL_ME>", result, text)) ``` 輸出: ```python def remove_non_ascii(s: str) -> str: """ Remove non-ascii characters from a string. """ result = "" for c in s: if ord(c) < 128: result += c return result ``` ::: ### 使用 Stream 模式 Server-sent event (SSE):伺服器主動向客戶端推送資料,連線建立後,在一步步生成字句的同時也將資料往客戶端拋送,和先前的一次性回覆不同,可加強使用者體驗。若有輸出大量 token 文字的需求,請務必優先採用 Stream 模式,以免遇到 Timeout 的情形。 ```bash= export API_KEY={API_KEY} export API_URL={API_URL} export MODEL_NAME={MODEL_NAME} # model: meta-codellama-7b-instruct curl "${API_URL}/models/text_infilling" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "inputs":"def compute_gcd(x, y):\n <FILL_ME>\n return result\n", "stream":true, "parameters":{ "max_new_tokens":50, "temperature":0.5, "top_k":50, "top_p":1, "frequence_penalty":1}}' ``` <br> 輸出:每個 token 會輸出一筆資料,最末筆則是會將先前生成的文字串成一筆、以及描述 token 個數和所花費的時間秒數。 > data: {"generated_text": "result", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " =", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " ", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "1", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "\n", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " ", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " while", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " (", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "x", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " !=", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " ", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "0", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": ")", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " and", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " (", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "y", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " !=", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " ", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "0", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "):", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "\n", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " ", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " if", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " x", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " >", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " y", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": ":", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "\n", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " ", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " x", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " =", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " x", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " %", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " y", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "\n", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " ", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " else", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": ":", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "\n", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " ", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " y", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " =", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " y", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " %", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " x", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "\n", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " ", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " result", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " =", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": " x", "function_call": null, "details": null, "total_time_taken": "0.80 sec", "prompt_tokens": 20, "generated_tokens": 50, "total_tokens": 70, "finish_reason": "length"} ::: info :bulb: **提示:注意事項** 1. 每筆 token 並不一定能解碼成合適的文字,如果遇到該種情況,該筆 generated_text 欄位會顯示空字串,該 token 會結合下一筆資料再來解碼,直接能呈現為止。 2. 本案例採用 [sse-starlette](https://github.com/sysid/sse-starlette),在 SSE 過程中約 15 秒就會收到 ping event,目前在程式中如果連線大於該時間就會收到以下資訊 (非 JSON 格式),在資料處理時需特別注意,下列 python 範例已經有包含此資料處理。 > event: ping > data: 2023-09-26 04:25:08.978531 ::: :::spoiler Python 範例 ```python= import json import requests, re MODEL_NAME = "{MODEL_NAME}" API_KEY = "{API_KEY}" API_URL = "{API_URL}" API_HOST = "afs-inference" # parameters max_new_tokens = 50 temperature = 0.5 top_k = 50 top_p = 1.0 frequence_penalty = 1.0 def text_infilling(prompt): headers = { "content-type": "application/json", "X-API-Key": API_KEY, "X-API-Host": API_HOST} data = { "model": MODEL_NAME, "inputs": prompt, "parameters": { "max_new_tokens": max_new_tokens, "temperature": temperature, "top_k": top_k, "top_p": top_p, "frequence_penalty": frequence_penalty }, "stream": True } messages = [] result = "" try: response = requests.post(API_URL + "/models/text_infilling", json=data, headers=headers, stream=True) if response.status_code == 200: for chunk in response.iter_lines(): chunk = chunk.decode('utf-8') if chunk == "": continue # only check format => data: ${JSON_FORMAT} try: record = json.loads(chunk[5:], strict=False) if "status_code" in record: print("{:d}, {}".format(record["status_code"], record["error"])) break elif record["total_time_taken"] is not None or ("finish_reason" in record and record["finish_reason"] is not None) : message = record["generated_text"] messages.append(message) print(">>> " + message) result = ''.join(messages) break elif record["generated_text"] is not None: message = record["generated_text"] messages.append(message) print(">>> " + message) else: print("error") break except: pass except: print("error") return result.strip("<EOT>") text = """def compute_gcd(x, y): <FILL_ME> return result """ result = text_infilling(text) print(re.sub("<FILL_ME>", result, text)) ``` 輸出: ``` >>> result >>> = >>> >>> 1 >>> >>> >>> while >>> ( >>> x >>> != >>> >>> 0 >>> ) >>> and >>> ( >>> y >>> != >>> >>> 0 >>> ): >>> >>> >>> if >>> x >>> > >>> y >>> : >>> >>> >>> x >>> = >>> x >>> % >>> y >>> >>> >>> else >>> : >>> >>> >>> y >>> = >>> y >>> % >>> x >>> >>> >>> result >>> = >>> x def compute_gcd(x, y): result = 1 while (x != 0) and (y != 0): if x > y: x = x % y else: y = y % x result = x return result ``` ::: ## Embedding (V1) ::: info :bulb: **提示:目前 Embedding API 的限制會受到以下數值影響** * Embedding Model:sequence length = 2048 * Embedding API 可以支援 Batch Inference,每筆長度不超過 2048 tokens。 ::: ### Curl 使用方式 1. 設定環境 ```= export API_KEY={API_KEY} export API_URL={API_URL} export MODEL_NAME={MODEL_NAME} ``` 2. 透過 `curl` 指令取得 embedding 結果 **使用範例** ```= curl "${API_URL}/models/embeddings" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "inputs": ["search string 1", "search string 2"] }' ``` **回傳範例** ```= { "data": [ { "embedding": [ 0.06317982822656631, -0.5447818636894226, -0.3353637158870697, -0.5117015838623047, -0.1446804255247116, 0.2036416381597519, -0.20317679643630981, -0.9627353549003601, 0.31771183013916016, 0.23493929207324982, 0.18029260635375977, ... ... ], "index": 0, "object": "embedding" }, { "embedding": [ 0.15340591967105865, -0.26574525237083435, -0.3885045349597931, -0.2985926568508148, 0.22742436826229095, -0.42115798592567444, -0.10134009271860123, -1.0426620244979858, 0.507709264755249, -0.3479543924331665, -0.09303411841392517, 1.0853372812271118, 0.7396582961082458, 0.266722172498703, ... ... ], "index": 1, "object": "embedding" } ], "total_time_taken": "0.06 sec", "usage": { "prompt_tokens": 6, "total_tokens": 6 } } ``` ### LangChain 使用方式 :::spoiler **Custom Embedding Model Wrapper** ```python= """Wrapper Embedding model APIs.""" import json import requests from typing import List from pydantic import BaseModel from langchain.embeddings.base import Embeddings import os class CustomEmbeddingModel(BaseModel, Embeddings): base_url: str = "http://localhost:12345" api_key: str = "" model: str = "" def get_embeddings(self, payload): endpoint_url=f"{self.base_url}/models/embeddings" embeddings = [] headers = { "Content-type": "application/json", "accept": "application/json", "X-API-KEY": self.api_key, "X-API-HOST": "afs-inference" } response = requests.post(endpoint_url, headers=headers, data=payload) body = response.json() datas = body["data"] for data in datas: embeddings.append(data["embedding"]) return embeddings def embed_documents(self, texts: List[str]) -> List[List[float]]: payload = json.dumps({"model": self.model, "inputs": texts}) return self.get_embeddings(payload) def embed_query(self, text: str) -> List[List[float]]: payload = json.dumps({"model": self.model, "inputs": [text]}) emb = self.get_embeddings(payload) return emb[0] ``` ::: * 完成以上封裝後,就可以在 LangChain 中直接使用 CustomEmbeddingModel 來完成特定的大語言模型任務。 ::: info :bulb: **提示:** 更多資訊,請參考 [**LangChain Custom LLM 文件**](https://python.langchain.com/docs/modules/model_io/models/llms/custom_llm)。 ::: #### 單一字串 * 單一字串取得 embeddings,使用 **`embed_query()`** 函式,並返回結果。 ```python= API_KEY={API_KEY} API_URL={API_URL} MODEL_NAME={MODEL_NAME} embeddings = CustomEmbeddingModel( base_url = API_URL, api_key = API_KEY, model = MODEL_NAME, ) print(embeddings.embed_query("請問台灣最高的山是?")) ``` 輸出: > [-1.1431972, -4.723901, 2.3445783, -2.19996, ......, 1.0784563, -3.4114947, -2.5193133] #### 多字串 * 多字串取得 embeddings,使用 **`embed_documents()`** 函式,會一次返回全部結果。 ```python= API_KEY={API_KEY} API_URL={API_URL} MODEL_NAME={MODEL_NAME} embeddings = CustomEmbeddingModel( base_url = API_URL, api_key = API_KEY, model = MODEL_NAME, ) print(embeddings.embed_documents(["test1", "test2", "test3"])) ``` 輸出: > [[-0.14880371, ......, 0.7011719], [-0.023590088, ...... , 0.49320474], [-0.86242676, ......, 0.22867839]] ## Embedding (V2) ::: info :bulb: **提示:目前 Embedding API 的限制會受到以下數值影響** * Embedding Model:sequence length = 131072 * Embedding API 可以支援 Batch Inference,每筆長度不超過 131072 tokens。 ::: ### Curl 使用方式 1. 設定環境 ```= export API_KEY={API_KEY} export API_URL={API_URL} export MODEL_NAME={MODEL_NAME} ``` 2. 透過 `curl` 指令取得 embedding 結果,input_type為V2新增的參數,說明如下。 1. 值只能設定為"query"或者是"document"。 2. 此參數不是必要,如果沒有設定,預設是"document"。 3. 值為"query"時,系統會自動將每一筆input加上前綴語句來加強embedding正確性。 4. 值為"document"時,input維持原本,不加前綴語句。 **使用範例** ```= curl "${API_URL}/models/embeddings" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "inputs": ["search string 1", "search string 2"], "parameters": { "input_type": "document" } }' ``` **回傳範例** ```= { "data": [ { "embedding": [ 0.015003109350800514, 0.002964278217405081, 0.025576837360858917, 0.0009064615005627275, 0.00896097905933857, -0.010766804218292236, 0.022567130625247955, -0.020284295082092285, -0.004011997487396002, -0.01566183753311634, -0.016150206327438354, -0.008938264101743698, 0.010346580296754837, 0.010187577456235886, ... ... ], "index": 0, "object": "embedding" }, { "embedding": [ 0.013649762608110905, 0.003280752571299672, 0.024047400802373886, 0.005184505134820938, 0.009756374172866344, -0.009389937855303288, 0.027826279401779175, -0.016409488394856453, 0.0020984220318496227, -0.0180928073823452, -0.014462794177234173, -0.006956569850444794, 0.013260424137115479, 0.018184415996074677, ... ... ], "index": 1, "object": "embedding" } ], "total_time_taken": "0.05 sec", "usage": { "prompt_tokens": 8, "total_tokens": 8 } } ``` 3. V2支援OpenAI Embedding API的參數如下 1. input: 目標字串list。 2. encoding_format: 可以設定為"float"或是"base64",設為"base64"代表會將向量結果轉成base64格式再輸出,預設值是"float"。 3. dimensions: 可以設定最多輸出多少維度的向量,例如設為4,那就只會輸出前四維度的向量,預設值是0,0代表輸出最大維度的向量。 **使用範例** ```= curl "${API_URL}/models/embeddings" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "input": ["search string 1", "search string 2"], "encoding_format": "base64", "dimensions": 4 }' ``` **回傳範例** ```= { "data": [ { "object": "embedding", "embedding": "pR0QPOuoY7sjFQM9U92HOw==", "index": 0 }, { "object": "embedding", "embedding": "6BXdOxIpD7vfHgA9suTyOw==", "index": 1 } ], "total_time_taken": "0.04 sec", "usage": { "prompt_tokens": 8, "total_tokens": 8 } } ``` 4. V2輸出的向量結果現在改為預設會做normalize,行為跟OpenAI一致。如果客戶想要保持跟之前一樣輸出為未做normalize的結果,可以在parameters底下新增一個參數"normalize",並將值設成false,如下所示。 **使用範例** ```= curl "${API_URL}/models/embeddings" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "input": ["search string 1", "search string 2"], "parameters": { "normalize": false } "encoding_format": "base64", "dimensions": 4 }' ``` ### LangChain 使用方式 :::spoiler **Custom Embedding Model Wrapper** ```python= """Wrapper Embedding model APIs.""" import json import requests from typing import List from pydantic import BaseModel from langchain.embeddings.base import Embeddings import os class CustomEmbeddingModel(BaseModel, Embeddings): base_url: str = "http://localhost:12345" api_key: str = "" model: str = "" def get_embeddings(self, payload): endpoint_url=f"{self.base_url}/models/embeddings" embeddings = [] headers = { "Content-type": "application/json", "accept": "application/json", "X-API-KEY": self.api_key, "X-API-HOST": "afs-inference" } response = requests.post(endpoint_url, headers=headers, data=payload) body = response.json() datas = body["data"] for data in datas: embeddings.append(data["embedding"]) return embeddings def embed_documents(self, texts: List[str]) -> List[List[float]]: payload = json.dumps({"model": self.model, "inputs": texts, "parameters": {"input_type": "query"}}) return self.get_embeddings(payload) def embed_query(self, text: str) -> List[List[float]]: payload = json.dumps({"model": self.model, "inputs": [text], "parameters": {"input_type": "query"}}) emb = self.get_embeddings(payload) return emb[0] ``` ::: * 完成以上封裝後,就可以在 LangChain 中直接使用 CustomEmbeddingModel 來完成特定的大語言模型任務。 ::: info :bulb: **提示:** 更多資訊,請參考 [**LangChain Custom LLM 文件**](https://python.langchain.com/docs/how_to/custom_llm/)。 ::: #### 單一字串 * 單一字串取得 embeddings,使用 **`embed_query()`** 函式,並返回結果。 ```python= API_KEY={API_KEY} API_URL={API_URL} MODEL_NAME={MODEL_NAME} embeddings = CustomEmbeddingModel( base_url = API_URL, api_key = API_KEY, model = MODEL_NAME, ) print(embeddings.embed_query("請問台灣最高的山是?")) ``` 輸出: > [-0.023335948586463928, 0.02815871126949787, 0.03960443660616875, 0.012845884077250957, ......, 0.010695642791688442, 0.001966887153685093, 0.008934334851801395] #### 多字串 * 多字串取得 embeddings,使用 **`embed_documents()`** 函式,會一次返回全部結果。 ```python= API_KEY={API_KEY} API_URL={API_URL} MODEL_NAME={MODEL_NAME} embeddings = CustomEmbeddingModel( base_url = API_URL, api_key = API_KEY, model = MODEL_NAME, ) print(embeddings.embed_documents(["test1", "test2", "test3"])) ``` 輸出: > [[-0.007434912957251072, ......, 0.009466814808547497], [-0.006574439350515604, ...... , 0.008274043910205364], [-0.005750700831413269, ......, 0.009992048144340515]] ## Rerank Rerank API 的核心功能是利用機器學習和自然語言處理技術,根據給定的模型對輸入的文本進行重新排序(rerank),模型會對每個候選答案進行評分,分數越高表示該答案與查詢的相關性越高。常用於資訊檢索、推薦系統和自然語言處理任務中,基於某種評分或評估標準,對初步排序的結果進行進一步優化,以提供更符合使用者期望的資訊。 ### 使用情境 Rerank API 可以應用在各種檢索相關的使用情境中,例如: * 資訊檢索系統:對初步檢索出的結果進行重新排序,提升最相關結果的排名。 * 問答系統:從多個潛在答案中選出最相關和正確的答案。 * 推薦系統:根據用戶偏好對推薦結果進行重新排序,提供更個性化的推薦。 * 文本匹配:在文本相似度計算中,對多個候選匹配結果進行排序,選擇最相似的文本。 ### 使用範例 以下是一個使用 curl 指令調用 Rerank API 的範例,並對三組查詢和答案進行重新排序。 ::: info :bulb: **提示:目前 Rerank API 的限制會受到以下數值影響** * Rerank Model:sequence length = 8192 * Rerank API 可以支援 Batch Inference,每筆長度不超過 8192 tokens。 ::: 1. 設定環境 ```= export API_KEY={API_KEY} export API_URL={API_URL} export MODEL_NAME={MODEL_NAME} ``` 2. 透過 `curl` 指令取得 rerank 結果,預設回傳結果為前三名的分數及index,如果需要更多或是更少,可以透過在parameters下的"top_n"參數來調整。另外輸入格式支援兩種方式,第一種是以"inputs"參數來指定查詢及候選答案兩兩一組的list,請參考以下範例1。第二種是以"query"參數來指定查詢及以"documents"參數來指定所有候選答案,請參考以下範例2。 範例1輸出的答案不會以分數排序,而範例2輸出的答案會依分數排序並依照top_n參數給予前幾名的分數結果。 **使用範例1** ```= curl "${API_URL}/models/rerank" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "inputs": [ [ "Where is the capital of Canada?", "Europe is a continent." ], [ "Where is the capital of Canada?", "The capital of Canada is Ottawa." ], [ "Where is the capital of Canada?", "Canada is a big country." ] ] }' ``` **回傳範例** ```= { "scores": [ 0.000016571451851632446, 0.9998936653137207, 0.040769271552562714 ], "total_time_taken": "0.07 sec", "usage": { "prompt_tokens": 41, "total_tokens": 41 } } ``` **使用範例2** ```= curl "${API_URL}/models/rerank" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "query": "Where is the capital of Canada?", "documents": [ "Europe is a continent.", "The capital of Canada is Ottawa.", "Canada is a big country." ], "parameters": { "top_n": 2 } }' ``` **回傳範例** ```= { "results": [ { "score": 0.9998936653137207, "index": 1 }, { "score": 0.040769271552562714, "index": 2 } ], "total_time_taken": "0.07 sec", "usage": { "prompt_tokens": 41, "total_tokens": 41 } } ``` 以上範例向 Rerank API 傳遞了三組查詢和候選答案: 1. "Where is the capital of Canada?" 與 "Europe is a continent." 2. "Where is the capital of Canada?" 與 "The capital of Canada is Ottawa." 3. "Where is the capital of Canada?" 與 "Canada is a big country." Rerank API 回傳了前兩名候選答案的相關性分數,第二個答案的分數(0.9998936653137207)顯然高於第三個答案的分數(0.040769271552562714),表示 "The capital of Canada is Ottawa." 更加相關和正確。開發者可以根據這些分數對候選答案進行排序,選擇最相關的結果。因此,這種方法能顯著提高資訊檢索和問答系統的準確性和有效性。 ## Generate(請優先使用 [Conversation](#Conversation)) ### 一般使用 ```bash= export API_KEY={API_KEY} export API_KEY={API_KEY} export MODEL_NAME={MODEL_NAME} # model: ffm-mixtral-8x7b-32k-instruct curl "${API_URL}/models/generate" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "inputs":"從前從前,有位老太太去河邊", "parameters":{ "max_new_tokens":200, "temperature":0.5, "top_k":50, "top_p":1, "frequence_penalty":1}}' ``` 輸出:包括生成的文字、token 個數以及所花費的時間秒數。 > { "generated_text": ",她洗完衣服後,要把衣服晾在河邊的一棵樹上。但老太太又老又弱,她爬不上樹,於是她決定把衣服掛在樹枝上。老太太拿起衣服,開始往樹枝上掛衣服,但她掛了幾件衣服後,樹枝斷了,所有的衣服都掉到河裡去了。老太太看到這一幕,非常傷心,她說:「我的衣服都掉到河裡去了!」老太太的孫女看到這一幕,心想:「我可以幫助我的祖母,我可以幫助她把衣服掛在樹枝上。」於是,這位孫女走到河邊,開始幫助她的祖母把衣服掛在樹枝上", "function_call": null, "details": null, "total_time_taken": "18.88 sec", "prompt_tokens": 17, "generated_tokens": 200, "total_tokens": 217, "finish_reason": "length" } :::spoiler Python 範例 ```python= import json import requests MODEL_NAME = "{MODEL_NAME}" API_KEY = "{API_KEY}" API_URL = "{API_URL}" API_HOST = "afs-inference" # parameters max_new_tokens = 200 temperature = 0.5 top_k = 50 top_p = 1.0 frequence_penalty = 1.0 def generate(prompt): headers = { "content-type": "application/json", "X-API-Key": API_KEY, "X-API-Host": API_HOST} data = { "model": MODEL_NAME, "inputs": prompt, "parameters": { "max_new_tokens": max_new_tokens, "temperature": temperature, "top_k": top_k, "top_p": top_p, "frequence_penalty": frequence_penalty } } result = '' try: response = requests.post( API_URL + "/models/generate", json=data, headers=headers) if response.status_code == 200: result = json.loads(response.text, strict=False)['generated_text'] else: print("error") except: print("error") return result.strip("\n") result = generate("從前從前,有位老太太去河邊") print(result) ``` 輸出: > ,她洗完衣服後,要把衣服晾在河邊的一棵樹上。但老太太又老又弱,她爬不上樹,於是她決定把衣服掛在樹枝上。老太太拿起衣服,開始往樹枝上掛衣服,但她掛了幾件衣服後,樹枝斷了,所有的衣服都掉到河裡去了。老太太看到這一幕,非常傷心,她說:「我的衣服都掉到河裡去了!」老太太的孫女看到這一幕,心想:「我可以幫助我的祖母,我可以幫助她把衣服掛在樹枝上。」於是,這位孫女走到河邊,開始幫助她的祖母把衣服掛在樹枝上 ::: ```bash= export API_KEY={API_KEY} export API_URL={API_URL} export MODEL_NAME={MODEL_NAME} # model: ffm-mixtral-8x7b-32k-instruct curl "${API_URL}/models/generate" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "inputs":"可以幫我規劃台北兩日遊,並推薦每天的景點及說明其特色嗎?", "parameters":{ "max_new_tokens":350, "temperature":0.5, "top_k":50, "top_p":1, "frequence_penalty":1}}' ``` 輸出:包括生成的文字、token 個數以及所花費的時間秒數。 > { "generated_text": "答案是: 第一天: 1. 台北101觀景台 - 這是台北最受歡迎的景點之一,提供城市天際線的壯觀景色。 2. 國立故宮博物院 - 這是世界上最著名的藝術和文物收藏之一,展示了中國豐富的文化遺產。 3. 台北中正紀念堂 - 這是一座宏偉的紀念堂,致力於紀念中華民國前總統蔣中正。 4. 台北國立台灣博物館 - 這是一個展示台灣歷史、文化和藝術的博物館。 5. 台北夜市 - 這是一個熱鬧的夜市,提供各種街頭美食、購物和娛樂。 第二天: 1. 陽明山國家公園 - 這是一個美麗的國家公園,提供令人驚嘆的台北市區景色。 2. 台北101觀景台 - 這是另一個觀景台,提供城市天際線的壯觀景色。 3. 台北國立台灣博物館 - 這是另一個博物館,展示台灣歷史、文化和藝術。 4. 台北故宮 - 這是另一個展示中國豐富文化遺產的", "function_call": null, "details": null, "total_time_taken": "33.08 sec", "prompt_tokens": 31, "generated_tokens": 350, "total_tokens": 381, "finish_reason": "length" } :::spoiler Python 範例 ```python= import json import requests MODEL_NAME = "{MODEL_NAME}" API_KEY = "{API_KEY}" API_URL = "{API_URL}" API_HOST = "afs-inference" # parameters max_new_tokens = 350 temperature = 0.5 top_k = 50 top_p = 1.0 frequence_penalty = 1.0 def generate(prompt): headers = { "content-type": "application/json", "X-API-Key": API_KEY, "X-API-Host": API_HOST} data = { "model": MODEL_NAME, "inputs": prompt, "parameters": { "max_new_tokens": max_new_tokens, "temperature": temperature, "top_k": top_k, "top_p": top_p, "frequence_penalty": frequence_penalty } } result = '' try: response = requests.post( API_URL + "/models/generate", json=data, headers=headers) if response.status_code == 200: result = json.loads(response.text, strict=False)['generated_text'] else: print("error") except: print("error") return result.strip("\n") result = generate("可以幫我規劃台北兩日遊,並推薦每天的景點及說明其特色嗎?") print(result) ``` 輸出: > 答案是: 第一天: 1. 台北101觀景台 - 這是台北最受歡迎的景點之一,提供城市天際線的壯觀景色。 2. 國立故宮博物院 - 這是世界上最著名的藝術和文物收藏之一,展示了中國豐富的文化遺產。 3. 台北中正紀念堂 - 這是一座宏偉的紀念堂,致力於紀念中華民國前總統蔣中正。 4. 台北國立台灣博物館 - 這是一個展示台灣歷史、文化和藝術的博物館。 5. 台北夜市 - 這是一個熱鬧的夜市,提供各種街頭美食、購物和娛樂。 第二天: 1. 陽明山國家公園 - 這是一個美麗的國家公園,提供令人驚嘆的台北市區景色。 2. 台北101觀景台 - 這是另一個觀景台,提供城市天際線的壯觀景色。 3. 台北國立台灣博物館 - 這是另一個博物館,展示台灣歷史、文化和藝術。 4. 台北故宮 - 這是另一個展示中國豐富文化遺產的 ::: ### 使用 Stream 模式 Server-sent event (SSE):伺服器主動向客戶端推送資料,連線建立後,在一步步生成字句的同時也將資料往客戶端拋送,和先前的一次性回覆不同,可加強使用者體驗。若有輸出大量 token 文字的需求,請務必優先採用 Stream 模式,以免遇到 Timeout 的情形。 ```bash= export API_KEY={API_KEY} export API_URL={API_URL} export MODEL_NAME={MODEL_NAME} # model: ffm-mixtral-8x7b-32k-instruct curl "${API_URL}/models/generate" \ -H "X-API-KEY:${API_KEY}" \ -H "X-API-HOST: afs-inference" \ -H "content-type: application/json" \ -d '{ "model": "'${MODEL_NAME}'", "inputs":"台灣最高峰是", "stream":true, "parameters":{ "max_new_tokens":2, "temperature":0.5, "top_k":50, "top_p":1, "frequence_penalty":1}}' ``` 輸出:每個 token 會輸出一筆資料,最末筆則是會將先前生成的文字串成一筆、以及描述 token 個數和所花費的時間秒數。 > data: {"generated_text": "玉", "function_call": null, "details": null, "total_time_taken": null, "prompt_tokens": 0, "generated_tokens": 0, "total_tokens": 0, "finish_reason": null} > data: {"generated_text": "山", "function_call": null, "details": null, "total_time_taken": "0.25 sec", "prompt_tokens": 7, "generated_tokens": 2, "total_tokens": 9, "finish_reason": "length"} ::: info :bulb: **提示:注意事項** 1. 每筆 token 並不一定能解碼成合適的文字,如果遇到該種情況,該筆 generated_text 欄位會顯示空字串,該 token 會結合下一筆資料再來解碼,直接能呈現為止。 2. 本案例採用 [sse-starlette](https://github.com/sysid/sse-starlette),在 SSE 過程中約 15 秒就會收到 ping event,目前在程式中如果連線大於該時間就會收到以下資訊 (非 JSON 格式),在資料處理時需特別注意,下列 Python 範例已經包含此資料處理。 > event: ping > data: 2023-09-26 04:25:08.978531 ::: :::spoiler Python 範例 ```python= import json import requests MODEL_NAME = "{MODEL_NAME}" API_KEY = "{API_KEY}" API_URL = "{API_URL}" API_HOST = "afs-inference" # parameters max_new_tokens = 2 temperature = 0.5 top_k = 50 top_p = 1.0 frequence_penalty = 1.0 def generate(prompt): headers = { "content-type": "application/json", "X-API-Key": API_KEY, "X-API-Host": API_HOST} data = { "model": MODEL_NAME, "inputs": prompt, "parameters": { "max_new_tokens": max_new_tokens, "temperature": temperature, "top_k": top_k, "top_p": top_p, "frequence_penalty": frequence_penalty }, "stream": True } messages = [] result = "" try: response = requests.post(API_URL + "/models/generate", json=data, headers=headers, stream=True) if response.status_code == 200: for chunk in response.iter_lines(): chunk = chunk.decode('utf-8') if chunk == "": continue try: record = json.loads(chunk[5:], strict=False) if "status_code" in record: print("{:d}, {}".format(record["status_code"], record["error"])) break elif record["total_time_taken"] is not None or ("finish_reason" in record and record["finish_reason"] is not None) : message = record["generated_text"] messages.append(message) print(">>> " + message) result = ''.join(messages) break elif record["generated_text"] is not None: message = record["generated_text"] messages.append(message) print(">>> " + message) else: print("error") break except: pass except: print("error") return result.strip("\n") result = generate("台灣最高峰是") print(result) ``` ::: <br> 輸出: ``` >>> 玉 >>> 山 玉山 ``` ### LangChain 使用方式 :::spoiler **Custom LLM Model Wrapper** ```python= from typing import Any, Dict, List, Mapping, Optional, Tuple from langchain.llms.base import BaseLLM import requests from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.schema.language_model import BaseLanguageModel from langchain.schema import Generation, LLMResult from pydantic import Field import json import os class _FormosaFoundationCommon(BaseLanguageModel): base_url: str = "http://localhost:12345" """Base url the model is hosted under.""" model: str = "ffm-mixtral-8x7b-32k-instruct" """Model name to use.""" temperature: Optional[float] """The temperature of the model. Increasing the temperature will make the model answer more creatively.""" stop: Optional[List[str]] """Sets the stop tokens to use.""" top_k: int = 50 """Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 50)""" top_p: float = 1 """Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 1)""" max_new_tokens: int = 350 """The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size.""" frequence_penalty: float = 1 """Penalizes repeated tokens according to frequency.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" ffm_api_key: Optional[str] = None @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling FFM API.""" normal_params = { "temperature": self.temperature, "max_new_tokens": self.max_new_tokens, "top_p": self.top_p, "frequence_penalty": self.frequence_penalty, "top_k": self.top_k, } return {**normal_params, **self.model_kwargs} def _call( self, prompt, stop: Optional[List[str]] = None, **kwargs: Any, ) -> str: if self.stop is not None and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop is not None: stop = self.stop elif stop is None: stop = [] params = {**self._default_params, "stop": stop, **kwargs} parameter_payload = {"parameters": params, "inputs": prompt, "model": self.model} # HTTP headers for authorization headers = { "X-API-KEY": self.ffm_api_key, "Content-Type": "application/json", "X-API-HOST": "afs-inference" } endpoint_url = f"{self.base_url}/models/generate" # send request try: response = requests.post( url=endpoint_url, headers=headers, data=json.dumps(parameter_payload, ensure_ascii=False).encode("utf8"), stream=False, ) response.encoding = "utf-8" generated_text = response.json() if response.status_code != 200: detail = generated_text.get("detail") raise ValueError( f"FormosaFoundationModel endpoint_url: {endpoint_url}\n" f"error raised with status code {response.status_code}\n" f"Details: {detail}\n" ) except requests.exceptions.RequestException as e: # This is the correct syntax raise ValueError(f"FormosaFoundationModel error raised by inference endpoint: {e}\n") if generated_text.get("detail") is not None: detail = generated_text["detail"] raise ValueError( f"FormosaFoundationModel endpoint_url: {endpoint_url}\n" f"error raised by inference API: {detail}\n" ) if generated_text.get("generated_text") is None: raise ValueError( f"FormosaFoundationModel endpoint_url: {endpoint_url}\n" f"Response format error: {generated_text}\n" ) return generated_text class FormosaFoundationModel(BaseLLM, _FormosaFoundationCommon): """Formosa Foundation Model Example: .. code-block:: python ffm = FormosaFoundationModel(model_name="llama2-7b-chat-meta") """ @property def _llm_type(self) -> str: return "FormosaFoundationModel" @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{ "model": self.model, "base_url": self.base_url }, **self._default_params } def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to FormosaFoundationModel's generate endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = FormosaFoundationModel("Tell me a joke.") """ generations = [] token_usage = 0 for prompt in prompts: final_chunk = super()._call( prompt, stop=stop, **kwargs, ) generations.append( [ Generation( text = final_chunk["generated_text"], generation_info=dict( finish_reason = final_chunk["finish_reason"] ) ) ] ) token_usage += final_chunk["generated_tokens"] llm_output = {"token_usage": token_usage, "model": self.model} return LLMResult(generations=generations, llm_output=llm_output) ``` ::: * 完成以上封裝後,就可以在 LangChain 中使用 FFM 大語言模型。 ::: info :bulb: **提示:** 更多資訊,請參考 [**LangChain Custom LLM 文件**](https://python.langchain.com/docs/modules/model_io/models/llms/custom_llm)。 ::: ```python= MODEL_NAME = "ffm-mixtral-8x7b-32k-instruct" API_KEY = "{API_KEY}" API_URL = "{API_URL}" ffm = FormosaFoundationModel( base_url = API_URL, max_new_tokens = 350, temperature = 0.5, top_k = 50, top_p = 1.0, frequence_penalty = 1.0, ffm_api_key = API_KEY, model = MODEL_NAME ) print(ffm("請問台灣最高的山是?")) ``` 輸出: > 答案是:玉山。 > >玉山,也被稱為玉山國家公園,位於台灣南部,是該國最高的山,海拔3952米(12966英尺)。它是台灣阿里山山脈的一部分,以其崎嶇的地形、翠綠的森林和多種植物和動物而聞名。玉山是徒步旅行者和自然愛好者的熱門目的地,被認為是台灣最美麗和最具挑戰性的山之一。 ```

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully