C.A.Lee
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- robots: index, follow tags: NCTU, CS, 共筆, OOP, 游逸平 description: 交大資工課程學習筆記 lang: zh-tw dir: ltr breaks: true disqus: calee GA: UA-100433652-1 --- 離散數學--楊武 === # 課程 ## 第一章 Logic and Proofs ## 第二章 Sets, Functions, Sequences and Sum - Sets - 元素可任意(不一定要數字) e.g: { car, airplane, ... } - 元素可重複 e.g: {1,1,2,3,5,7} - 寫法 1. {2,3,5,7,...} 2. {n | n=2k} - 集合可爲另一集合的元素 e.g: { {1,2,3}, car, {airplane,shoe}, {{{0}}} } - 空集合 {} = ∅ - 集合關係 1. 聯集 A ∪ B = { x | x ∈ A || x ∈ B } 2. 交集 A ∩ B = { x | x ∈ A && x ∈ B } 3. 差集 A - B = { x | x ∈ A but x ∉ B } ≠ B - A 4. 補集 U - A = ~A { x | x ∈ ∀ ~A } 5. 宇集 U = ∀x = A + ~A 6. symmatrix difference A ⊕ B = (A-B) ∪ (B-A) 7. subset A ⊆ B 8. proper subset A ⊂ B = A ⊆ B && A ≠ B - Lemma 1. A e= B iff ∀x ∈ A, x ∈ B ( A ⊆ A, ∅ ⊆ A, ∅ ⊆ ∅) 2. 1 ≠ {1} ≠ {{1}} 3. A = B iff A ⊆ B && B ⊆ A 4. ~(A ∪ B ∪ C) == ~A ∩ ~B ∩ ~C 5. (A*B)∩(B*A) == (A∩B)*(B∩A)==(A∩B)*(A∩B)==(A∩B)^2 ex1: A={ap * bp * cq | p,q ∈ N} B={ap * bq * cq | p,q ∈ N} A ∩ B = {ap * bp * cp | p ∈ N} A ∪ B = {ax * by * cz | x=y or y=z} A - B = {ap * bp * cq | p ≠ q} ex2: A ⊆ B && B = {1,2,3,4} (|B| = 4) => A 的可能性有 2^|B| 種 ex3: A={1,2,3} B={x,y,z} A x B = {(1,x)(1,y)(1,z)(2,x)...(3,z)} ((1,x) 不可對調) |A*B|=|A|*|B| 2^|A*B| = 2^|A|*2^|B| ex4: ∅ * A = ∅ A * ∅ = ∅ ex5: <pf> (P*Q)∩(R*S)=(PAR)*(QAS) Hint: X=Y == X⊆Y && Y⊆X 1. (P*Q)∩(R*S) ⊆ (P∩R)*(Q∩S) choose any (a,b) ∈ (P*Q)∩(R*S) so (a,b) ∈ P*Q && (a,b) ∈ R*S => a ∈ P && b ∈ Q && a ∈ R && b ∈ S => a ∈ (P∩R) && b ∈ (Q∩S) => (a,b) ∈ (PAR)*(QAS) 2. (P∩R)*(Q∩S) ⊆ (P*Q)∩(R*S) (P∩R)*(Q∩S) == (P*(Q∩S)∩(R*(Q∩S)) (cause:(x∩y)*z = (x*z)∩(y*z)) == ((P*Q)∩(P*S))∩((R*Q)∩(R*S)) e= (P*Q)∩(R*S) (cause:A∩B∩C∩De=A∩C) - operation 1. x&y=y&x 2. x|y=y|x 3. (x|y)|z=x|(y|z) 4. (x&y)&z=x&(y&z) 5. x&(y|z)=(x&y)|(x&z) 6. x|(y&z)=(x|y)&(x|z) 7. x&x=x 8. x|x=x 9. ~x=x - infinite sets - n(N) = |N| = ∞ - property: if A ⊂ N (A != N) => |A| = |N| - countable set - set that can map N { x | x ∈ N} Lemma X={x | 0 < x < 1 } is not countable Proof Assume X is countable we may list all elements of x as: x1 = 0.12376... x2=0.2376... x3=0.376 x4=0.000099... .... Let y = 0.y1y2y3y4...., where yi = (the i-th digit after the decimal point of xi) + 1 (9 becomes 0) then 0 < y < 1, i.e. y ∈ X But we have listed all elements of X, y must be one of those xi's. This is impossible since the i-th digit after the decimal point of y differ from the i-th digit after the decimal point of xi, which implies that y ≠ xi ∀ i →← Lemma Assume A and B are countable, Then A∩ B is countable Then A ∪ B is countable Then A x B is countable Lemma Assume A1, A2, ... are countable Then A1 ∪ A2 ∪ A3... is countable? Then A1 x A2 x A3 ... is countable? - conumerous Def: A and B are conumerous iff ∃1-1 onto mapping f A → B ex: N and O, N and E, N and Z, N and Q, N and P, N and R... - composition - f。g(x) = f(g(x)) - (f。g)。h (x) = f。(g。f) (x) - f。f = f2 - f。f。f = f3 - f0 = identity function ex: f=[abcdefgh] = [abcdefgh] . [abcdefgh] dfacgehb dbacefgh afcdgheb - inverse - Given f: A -> B if g satisfies g(y) = x iff f(x) = y then g = f-1(x) - not all function have inverse [abcd] have no inverse ccba 1. f-1(c) = a or b ? 2. f-1(d) = ? - Lemma: f has an inverse iff f is 1-1 and onto(映成) - Lemma: inverse is unique -> f-1 is unique (if f-1 exists) - Lemma: Assume f-1 and g-1 exist => f-1。g-1 = (g。f)-1 - Lemma: (fk)-1 =(fff...f)-1 - Theorem: Assume A is any finit set, there is no 1-1 onto function from A to 2A - Theorem: Assume A is infinit set, there is no 1-1 onto function from A to 2A - sequences summation products - 1 2 3 ... arithmetic seq - 1 2 4 8 16... geometric - 1/1 1/2 1/3 1/4... harmonic (倒數呈等差) (Hn) - 1 1 2 3 5 8... Feb - ∑ summation - ∑c = nc - ∑k = n(n+1) / 2 - ∑k2 = n(n+1)(2n+1) / 6 - ∑k3 = ( n(n+1) / 2 )2 - ∑xk = x1 + x2 + ... + xn = (x-xn+1) / (1-x) - ∑Hn = infinit - π products - π(ab) = πa * πb ex: ![](https://hackpad-attachments.imgix.net/nctucs08course.hackpad.com_9fFYw2ujysg_p.582121_1458268835379_擷取選取區域_002.png?fit=max&w=882) will be an harmonic seq. ex: n筒油,車車每走來回走幾公里? ex: πi=1n πj=1m(ij) = (m!)n(n!)m πi=1n(πj=1m(πk=1p(ijk))) = (n!)mp(m!)np(p!)nm ex: Let Hn = 1/1+1/2+1/3+...+1/n => H2^k >= 1+k/2 when k = 1 => H2 = 1+1/2 ok if H2^k> 1+k/2 H2^(k+1) = 1+1/2+1/3+...+1/2k+...+1/2k+1 = H2^k + 1/2k+1 + 1/2k+2 +...+1/2k+1 >= 1+k/2 + 2k*1/2k+1 = 1+ k/2 + 2k / 2k+1 = 1 + k/2 + 1/2 = 1+(k+1)/2 ex: p1a1p2a2p3a3...pkak = (p10+p11+...+p1a_1)(p20+...p2a_2)...(pk0+...pka_k) = (1-p1a_1+1)/(1-p1) * ... * (1-pka_k+1)/(1-pk) ex: πp1a1p2a2...pkak = ππ...π() = p1a1v(n)/2p2a2v(n)/2...pkakv(n)/2 ex: Assume 2n-1 are primes σ(2n-1(2n-1)) 所有質因數有:2,2n-1 所有因數:... = 2n-1 + (2n-1)(2n-1) = (2n-1)2n =2 2n-1(2n-1) perfect number! ex: an = 1,2,2,3,3,3,4,4,4,4,... Define f(k) = the position of last k f(n) = n + f(n-1) = ∑n = n(n+1)/2 an = [squl(2n) + 1/2] Assume n(n-1)/2 + 1 < j < n(n+1)/2 then n = [squl(2j)+1/2] ## 第四章 Natural number 1729 = 13+123 = 93+103 - meaning of natural number - order 1<2<3<4<5<... - counter - 整除 - 因數、公因數、最大公因數gcd、公倍數、最小公倍數lcm - Lemma: gcd(x,y) = gcd(x-y,y) ==> 展轉相除法 <proof> Let d = gcd(x,y) Let e = gcd(x-y,y) so d | x d | y so d | x-y so d <= gcd(x-y,y) i.e. d <= e so e | x-y e | y so e| (x-y)+y so e | x so e <= gcd(x,y) so e <= d ===> e == d - 質數prime - infinite primes 無限個 - unique factorization 質因數分解唯一 Let p1 <= p2 <= ... <= pn q1 <= q2 <= ... <= qm (be prime) Assume p1p2...pn = q1q2...qn => n=m && pi = qi <error proof> cause p1p2...pn = q1q2...qm so p1 | q1q2...qm ---> this step to the next is error!! (because it use the same lemma as itself(requisive)) so ∃k s.t. p1=qk cause qk >= q1 so p1 >= q1 as the same result => q1 >= p1 so p1 = q1 <proof> p1 | q1 *q2 *... p1 | qr (for some r) p1 = qr >= q1 同理 q1 >= p1 => q1 = p1 - Lemma: if gcd(x,y) = 1 => E u,v s.t. ux + vy = 1 - Lemma: gcd(x,y) = gcd(x-y,y) Assume x > y > 0 - Lemma: Assume p is a prime q ∈ N => gcd(p,q) = 1 or p - Lemma: Assume p is prime, p | a,b => p | a or p | b - Lemma: Assume p is a prime p | q1*q2*... then p | q1 or p | q2 or ...or p | qn - Unique Factorization (每一個數做分解,只有唯一形式) - [170141183460469231731687303715884105727](https://en.wikipedia.org/wiki/Wikipedia:Evaluating_how_interesting_an_integer%27s_mathematical_property_is#170141183460469231731687303715884105727) - Assume the smallest prime fector of n is greater than n1/3 => n is two prime number's product - 質因數分解 < 從 sqrt(n)往下做 ex: 13837 = 101 * 137 [sqrt(n)] = 118 δ(118) - 1182 - n = 87 δ(119) = 1192 - n = 324 = 182 δ(120) = δ(119) + 2*120 - 1 = ... ex: 一數若可分兩種兩質因平方數的合,此數必為合數 n = a2 + b2 = c2 + d2 assume n is odd assume a,c are odd, b,d are even a2 - c2 = d2 - b2 (a-c)(a+c) = (d-b)(d+b) Let k = gcd(a-c,d-b) a-c = kl d-b = km gcd(l,m) = 1 kl(a+c) = km(d+b) l | d+b m | a+c a+c = mu ?why can same u? A:'cuz kl(a+c) = km(d+b) d+b = lu u | gcd(a+c,d+b) a = (mu+kl)/2, b = (lu-km)/2, c = (mu-kl)/2, d = (lu+km)/2 n = [(k/2)2 + (u/2)2](m2 + l2) => 質數只可拆成一種兩平方數的合(Euler's theorem) ex: 數列4n-1有無限多個質數 assume there are only finite primes of the form 4n-1 all prime in this form is p1, p2,...pk define R = 4(p1*p2*...*pk) - 1 R != pi && R > pk Suppose R is not a prime => R's prime factors must be odd (R is odd) => must be 4m-1 or 4m+1 => R = (4m1+1)(4m2+1)...(4mk+1) = 4w+1 != 4n-1 -x- - there are infinite prime of the form am+b {a,b|gcd(a,b)=1} (Lejeune-Dirichlet Theorem) - 質數漸稀疏性? - Prime number Theorem (Ganuss) Let π(x) = number of prime ≤ x limx->inf ( π(x)/(x/lnx) ) = 1 - twin prime: n,n+1 are prime - Theorem: Let p,q are two consecotive primes. Then |p-q| can be as large as you wish We wish to find p,q so that |p-q| > k let r = k! let p be the largest prime less than r+2 let q be the smallest prime greater than r+k q-p >= k - Lemma: if 2n-1 is prime, then n is a prime <=> if n is not prime, then 2n-1 is not prime <proof> 2rs - 1 = (2r)s - 1 = ((2r)s-1 + (2r)s-2 + ... + 2r + 1)(2r - 1) - mersenne prime 2n-1 - modular - a ≡ b (mod n) <=> n | a-b - Lemma: assume p and q are primes if q | 2p - 1 then p | q-1 if p !| q-1 gcd(p,q-1) = 1 ∃n,m mp+n(q-1) = 1 assume n > 0, m < 0 ause q | 2p - 1 => 2p mod q ≡ 1 ≡ (2p)-m cause q is a prime and 2 is not a muiple of q 2q-1 mod q ≡ 1 2n(q-1) = (2q-1)n mod q ≡ 1 2 ≡ 2mp+n(q-1) mod ≡ 2mp2n(q-1) ≡ 2n(q-1) ≡ 1 - Fermat's Little Theorem let p be a ***prime*** 1. for any a: ap mode p ≡ a 2. if a is not a multiple of p, then ap-1 mod p ≡ 1 - Lemma: Assume p > 2, p is a prime then every divisor of 2p-1 must have the form 2pk+1 <proof> **===============================================> 看不懂 = =|||** we need to prove all prime divisors of 2p-1 have the form 2pk+1 Assume q is a prime divisor of 2p-1 => p | q-1 => q is odd, 2 | q-1, p | q-1, 2p | q-1 => q = 2pk+1 - Lemma: Assume p and q are prime if q | 2p - 1 then p | q - 1 - perfect number: sum of all factors = 2n - Lemma: Assume 2n - 1 is a prime 2n-1(n2-1) is an even perfect number (2n - 1), 2(2n - 1), 22(2n - 1)... -> Σ[2n(2n - 1)] - Lemma: Suppose a,b ∈ N, a,b are relative prime => σ(ab) = σ(a)σ(b) <proof> Let a1, a2, ..., ak be all factors of a b1, b2, ..., bp is all factors of b => every divisor of ab must be aibj => ΣΣ(aibj) = Σ(ai)Σ(bj) = σ(a)σ(b) - Lemma: All even perfect numbers have the form 2n-1(2n - 1), where 2n - 1 is a prime <proof> Let n is an even perfect number σ(n) - 2n n = 2a * m (where m is odd and a≥1) => σ(n) = σ(2a)σ(m) = (2a+1-1)σ(m) σ(n) = 2n = 2*2am => 2a+1-1|σ(m) σ(m) = 2a+1 * m/(2a+1-1) let l = m/(2a+1-1) σ(m) = m+l l|m -> l is a factor of m σ(m) = 1 + m + ... => m is a prime and l = 1 => m = 2a_1 - 1, n = 2a(2a+1-1) - Linear Diophantine equation: c = ax + by (a,b,c ∈ Z) - Lemma: ax+by = c, has solutions iff gcd(a,b) | c - 解法:先找到跟a,b到gcd的比例,乘倍數到 c … - 3x+17y = 6 ≡ 3x ≡ 6(mod 17) - Theme: if ca == cb (mod m) - => a == b (mod m/gcd(c,m) ) - Theme: Let d be a multiple of gcd(c,m) - => cx == d (mod m) has exaetly gcd(c,m) slolutions (0 <= x <= m-1) - Fermate's Little Theme: - Let p be a prime, - => if a is not a multiple of p => ap-1 == 1 (mod p) - => ap == a (mod p) ex: 99999923 mod 23 = ? cause 23 !| 999999 => ? = 999999 <proof> consider a, 2a, 3a, ..., (p-1)a a mod p, 2a mod p, 3a mod p, ..., (p-1)a mod p if ia mod p == 0 => p | ia => p | i or p | a (but p!|a, p!|i, cause i < p) -><- => from a to (p-1)a are all difference and not 0 when mod p => a*2a*3a...(p-1)a == (p-1)! (mod p) => (p-1)! * ap-1 == (p-1)! mod p => ap-1 == 1 (mod p) (cause p-1!==1 mod p) ex: 31000 mod 17 = (316)62 * 38 mod 17 = 38 == (34)2 == (-4)2 ==16 - if bp-1 == 1 mod p but p is not a prime, we say p is a pseudo-prime to the base b - 中國餘數定理: - Let m1,m2,...mn be pairwise relatively prime,(互相互質) - Let m = m1m2...mn - Then the following equation have a unique solution mod m: - x == a1 mod m1 - x == a2 mod m2 - . - . - . - x == an mod mn <proof> 1. have solution Let pk = m/mk = m1*m2*...*mk-1* mk+1*...*mn gcd(pk,mk) = 1 => qkpk == 1 mod mk mk !| pk mk | pj (j != k) consider x = (a1p1q1+a2p2q2+...+anpnqn) mod m => x mod m1 == (a1p1q1+a2p2q2+...anpnqn) mod m1 == a1p1q1 mod m1 == a1 mod m1 (pkqk == 1 mod mk) x is a solution 2. unique assume y1 != y2 are both solution (0 <= y1,y2 < m) m1 | y1-y2 m2 | y1-y2 ... mn | y1-y2 =>y1-y2 = i*lcm(m1,m2,...,mn) but lcm(m1...mn) = m1*m2*...*mn = m => y1-y2 > m -><- ex: x == 2 mod 3 x == 3 mod 5 x == 2 mod 7 => m1 = 3, a1 = 2, q1 = 2 => m2 = 5, a2 = 3, q2 = 1 => m3 = 7, a3 = 2, q3 = 1 => x == 23 mod 105 - Theme: Let p,q,a e N - Let m = lcm(p,q) - the unique solution: - x == a mod p - x == a mod q - is - x == a mod m <proof> x = a+pk = a+ql => m | pk m | ql => x = a+mc - Theme: - Let m1,m2,...,mn,a e N - Let m = lcm(m1,m2,...,mn) - The unique solution to - x == a mod m1 - x == a mod m2 - ... - x == a mod mn - is - x == a mod m - Theme: - Let m1,m2,...,mn be pairwise relatively prime - Let m = m1*m2*...*mn - Then x == a mod m1 - x == a mod m2 - ... - x == a mod mn - has a unique solution modulo m - Encryption - 對稱式 - 非對稱式: public, private key - RSA => 挑戰質因數分解速度(弱點一 因數分解n 求 p,q, 弱點案二 e過小 m -> encrypt c = me mod n -> ciphertext -> decrypt p = cb mod n -> p (= m) method: choose two large primes p,q choose e the is relatively prime to (p-1)(q-1) choose d s.t. d*e == 1 mod (p-1)(q-1) set n = q*p encrypt: me mod n = c decrypt cd mod n = m => public key: (e,n) => private key: (d,p,q) <proof> (me)d mod n == m assume p !| m p is a prime => mp-1 == 1 mod p (me)d = med = m1+(p-1)(q-1)k = m(mp-1)(q-1)k mod p == m mod p 同理 (me)d == m mod q lcm(p,q) = qp -------中國餘數定理---------> (me)d == m mod n **Math Induction** P(N) [ P(1) ∧ ∀k (P(k)->P(k+1)] -> ∀kP(k) - 河內塔 - 費氏數列: fn > an-2 for n >= 3 and a = ( 1 + sqrt(5) ) / 2 - Lame's theorem: - gcd(a,b) (a > b > 0) - at most [5 * log10 b] + 1 次輾轉相除法可找到 gcd assume 做n次 => r0 = r1q1 + r2 r1 = r2q2 + r3 . . . rn-2 = rn-1qn-1 + rn rn-1 = rnqn => rn >= 1 = f2 rn-1 = rnqn >= 2 = f3 rn-2 = rn-1qn-1 + rn >= rn-1 + rn = 3 = f4 . . . r2 >= r3 + r4 = fn b = r1 >= r2 + r3 = fn+1 - blaanced parentheses (括號成對題目) (s 為成立的set) - if λ e s (λ是空字串) - if x e s => (x) e s - if x, y e s => xy e s - anthmetic expressions - i e s - if x e s => (x) e s - if x,y e s => (x+y) e s, (x-y) e s, (x * y) e s, (x / y) e - 逆敘述問題 - Pigeon hole principle (鴿籠原理) - 任意選五個數字,其中必有二數和或差為7的倍數 - [0], [1 6], [2 5], [3 4] - choose n+1 numbers from 1 to 2n (n > 1), exist a,b s.t. a | b - [1 2 4 8 ...], [3 3*2 3*4 3*8...], [5 5*2...], [7...] - choose n+1 numbers from 1 to 2n (n > 1), exist a,b s.t. a,b 互質 - [1 2], [3 4], [5 6],... - choose n numbers, exist a,b s.t. either (2n-3 | a+b) or (2n-3 | a-b) - [0], [1 2n-4], [2 2n-5] ... [n-2 n-1] - 三角形問題 - 交點問題 - 整數點問題 - 1~9 pi (a-b) - ˙77天 >= 1 and <= 132 - n2 + 1 (distinct) => n+1 個數都是遞增或遞減 ~~~~~ - 方形九點 三角形area <= 1/8 **Permutations** 有趣題目 [a](http://www.funlearn.tw/viewthread.php?tid=2920) [b](http://math1.ck.tp.edu.tw/%E6%9E%97%E4%BF%A1%E5%AE%89/%E5%AD%B8%E8%A1%93%E7%A0%94%E7%A9%B6/%E8%A4%87%E7%BF%92%E8%AC%9B%E7%BE%A9/%E6%8E%92%E5%88%97%E7%B5%84%E5%90%88(%E5%AD%B8%E7%94%9F%E7%89%88).pdf) [c](http://episte.math.ntu.edu.tw/articles/mm/mm_02_4_07/) Counting - no repetition - no missing items - correct viewpoint - parity: - 2: 2r-1 ( if last r-1 digit is even, the first digit just can have 1, otherwise, 0 ) - 5: g(r) = 4*g(r-1) + 1*(5r-1 - g(r-1)) - rule of sum - rule of product | | ordered | unordered | | ----------------- | ------- | --------- | | no repetitions | P | C | | allow repetitions | π | H | - 重複加密 is better - Hnr = Hr+1n-1 - Hnr != Hrn - Hnr = Hn-1r + Hn-1r-1 + Hn-1r-2 + ... + Hn-10 - Hnr = Hn-1r + Hnr-1 - Hnr = n/r Hrn - => 上面的加左邊的 - 捷徑走法 之 不能超過對角線 - 1. DP - 2. f(k,k) = c(k) (catalan number)= (2n)! / (n! n!) - (2n)! / ( (n-1)! * (n+1)! ) (只針對目標點在對角線上) - 3. f(i,j) 每次向右的次數會大於等於向上的次數 (類似括號問題) - [Catalan numbers](https://zh.wikipedia.org/wiki/%E5%8D%A1%E5%A1%94%E5%85%B0%E6%95%B0) - C(0) = 1, C(n) = Σ [ C(k-1) * C(n-k) ] - C(n) = 2n! / n!n! - 2n! / (n+1)!(n+1)! = 1/(n+1) × (2nn) - f(i,j) = f(i-1, j) + f(i, j-1), f(i,i) = f(i, i-1), f(i, 0) = 1 - 多邊形的三角形分類 - 捷徑走路對角線問題 - 二元樹 - a permntation pi() of 1,2,3,...,n(n is biggest) is cute iff pi = u n v - every element of u is less than every element of v - u and v are also cute - ex: 13254 - n 個元素中可以有幾個cute - B(n) = sum( B(k) * B(n-k-1) ) - 括號問題 - property M matrix (2×*n*的矩陣的標準[楊氏矩陣](https://zh.wikipedia.org/wiki/%E6%9D%A8%E6%B0%8F%E7%9F%A9%E9%98%B5)的數量為特例, 可用Catalan算) : - 陣列中行與列都遞增 - 將第一行換成 a ,第二行換成 b, ... - f(i,0,0) = 1 - f(i,j,k) = f(i-1,j,k) + f(i,j-1,k) + f(i,j,k-1) ( i > j > k ) - f(i,i,k) = f(i,i-1,k) + f(i,i,k-1) - f(i,j,j) = f(i-1,j,j) + f(i,j,j-1) - f(i,i,i) = f(i,i,i-1)) - or - f(i,0,0) = 1 - f(i,j,0) = f(i-1, j, 0) + f(i,j-1, 0) (i >= j > 0) - f(i,j,k) = f(i-1,j,k) + f(i,j-1,k) + f(i,j,k-1) (i >= j >= k > 0) - f(i,j,k) = 0 (others) - 巴斯卡定理 + 二項式定理 - 內含費波那契數 (斜數字和) - ... - Vandermonde identity - Cn+mr = sumk=0r( Cnk Cmr-k) - r <= n,m ? - sumk=0r Cn+kk = Cn+r+1r - C2n2 = Cn2 + Cn2 +n*n = 2Cn2 + n2 - 擴展 (a + b + c)n = ... - n2 / 2n = n2 / (1+1)n <= n2 / (n3/24) = 23 / n => 0 when n -> inf - (1 + 1)n = ... + ( n(n+1)(n+2) ) / (1 * 2 * 3) >= ( n(n+1)(n+2) ) / (1 * 2 * 3) >= n3 / 24 - principle of Inclusion and Exclusion (排容) - onto mapping: 1 - (not onto) - [derangements](https://zh.wikipedia.org/wiki/%E9%94%99%E6%8E%92%E9%97%AE%E9%A2%98) - define Pi = { f | f(i) = i } - ans = P1' and p2' and ... Pn' - p1vp2vp3v...vpn= p1 + p2 + ... + pn - p1Ap2 - p2Ap3 - ... + p1Ap2Ap3 ...... - = (n1) (n-1)! - (n2) (n-2)! + (n3) (n-3)! ... = n! (1 - 1/2! + 1/3! - 1/4! + ...) - => ans = n! - n! (1 - 1/2! + 1/3! ...) = n!/e - 一筆劃問題 - A -> B n條路 = n! - A -> B (-> A -> B) -> C 5條路 與 7條路 - AB -> BAB(2) or BCB(3) -> BC => 先說組合數有 5! / (2!3!) - 在對選出的線編號 => 5!/(2!3!) * 7! * 5! - 部分集合 (set and bag) **Relation** - A subset of A * B is called a relation - relation, tuple, attribuate - table, matrix - binary relation - A * A, a binary relation on A - S is reflexive iff Ax (x,x) e S(對角線為 1) - S is irreflexive iff Ax (x,x) !e S (對角線為 0) - S is symmetric iff (if(a,b) e S then (b,a) e S) (非對角線要對稱) - S is anti-symmetric iff ( if (a,b) e S and (b,a) e S => a = b ) -> x's refection can't be in S if x's refection isn't x (非對角線要互補) - S is asymmetric iff( if (a,b) e S then (b,a) !e S ) => anti-symmetric without (x,x) = anti-symmetric + irreflexive (非對角線互補+對角線為0) - S is transtive iff( if(a,b) e S and (b,c) e S => (a,c) e S - Identity relation ( I ): 只有對角線是 1 - Used - (R-1)-1 = R - Lemma: Assume R is symmetric => R-1 = R - complement: R' = { (a,b) | (a,b) !e R } - compose: R * S = { (a,c) | if(a,b) e R, (b,c) e S } (bool matrix compose) - ↑可用於有向圖問題 - (R*S)*T = R*(S*T) - Rn, R0 = I - Lemma: Let R e A*A => R is transitive iff R2 e R proof => Let (a,b) e R*R E c s.t. (a,c) e R and (c,b) e R cause R is transtive => (a,b) e R so R*R e R <= Assume R2 e R Let (a,c) e R, (c,b) e R (a,b) e R2 e R so R is transitive - Lemma: Let R e A * A => R is transtive iff Rn e R for n = 1,2,... - Lemma: Let R e A * A => if R is reflexive and transitive then R2 = R - [Transitive closure](https://zh.wikipedia.org/wiki/%E4%BC%A0%E9%80%92%E9%97%AD%E5%8C%85): Let R e A * A - Let R* be the smallest transitive relation containing R, R* is called the transitive closure of R - Theorem: R* = R U R2 U R3 U ... proof (1) R e R U R2 U R3 U ... (2) R U R2 U R3 U... is transitive Let (a,b) e R U R2 U R3 U... (b,c) e R U R2 U R3 U... We need to prove (a,c) e R U R2 U R3 U... cause (a,b) e SET => E k (b,c) e Rk cause (b,c) e SET => E h (a,b) e Rh (a,c) e Rk*Rh => (a,c) e SET (3) smallest We want to prove SET e R* Use math induction: k = 1 => R e R* (定義裡) assume Rk e R* => when n = k+1: Suppose Rk+1 !e R* E (e,f) e Rk+1, (e,f) !e R* cause (e,f) !e R* R e R*, R2 e R* ... Rk e R* so (e,f) !e R, (e,f) !e R2, ..., (e,f) !e Rk E d (e,d) e Rk, (d,f) e R (e,d) e Rk e R*, (d,f) e R e R* so R* is transitive (e,f) e R* -><- By induction, ... - Define R = { (n,n+1) | n e N } (1->2->3->4->5->...) - R* = { a < b | a,b e N } = R U R2 U R3 U ... (inf because N is inf set) - Lemma: Assume R e A * A && |A| = n - R* = R U R2 U R3 ... Rn - R* algorithm func tc(R) T := R repeat U = T T = (U*R) U R until no change return T /* T = R* */ OR Warshall's algorithm - [Equivilence relation](https://en.wikipedia.org/wiki/Equivalence_relation) - R is reflexive - R is symmetnc - R is transitive - D[ a ] = { b | (a,b) e R, a == b (mod x) } ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - Lemma: Let R e A * A - Assume R is an eq rel - The fellowing there claims are equal... - (1) (a,b) e R - (2) [a] = [b] - (3) [a] = A [b] != 0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # **作業** 第一次: Construct a truth table for each of these compound propositions. 1. (p∨q)∧(q∨¬q)∧(r∨¬q) 2. (p∧q∧r)∨(¬p∧¬q∧¬r) 3. ¬ [ (p∨q∨r)∧(¬p∨¬q∨¬r) ] 第二次: Construct a truth table for each of these compound propositions. 1. (p → q) ↔ (¬q → ¬p) 2. (p → q) → (q → p) 3. (p ↔ q) ⊕ (p ↔ ¬q) 第三次: Are the following inferences valid? 1. ∃x (P(x) → Q(x)) ⊢∃x P(x) → ∃x Q(x) 2. ∃x P(x) → ∃x Q(x) ⊢∃x (P(x) → Q(x)) 第四次: 1. Determine whether each of these arguments is valid. If an argument is correct, what rule of inference is being used? If it is not, what logical error occurs? 1. If n is a real number such that n > 1, then n 2 > 1. Suppose that n 2 > 1. Then n > 1 2. If n is a real number with n > 3, then n 2 > 9. Suppose that n 2 ≤ 9. Then n ≤ 3 3. If n is a real number with n > 2, then n 2 > 4. Suppose that n ≤ 2. Then n 2 ≤ 4 2. Identify the error or errors in this argument that supposedly shows that if ∃xP(x) ∧ ∃xQ(x) is true then ∃x(P(x) ∧ Q(x)) is true. 1. ∃xP(x) ∨ ∃xQ(x) Premise 2. ∃xP(x) Simplification from (1) 3. P(c) Existential instantiation from (2) 4. ∃xQ(x) Simplification from (1) 5. Q(c) Existential instantiation from (4) 6. P(c) ∧ Q(c) Conjunction from (3) and (5) 7. ∃x(P(x) ∧ Q(x)) Existential generalizatio 3. Use rules of inference to show that if ∀x(P(x) ∨ Q(x)) and ∀x((¬P(x) ∧ Q(x)) → R(x)) are true, then ∀x(¬R(x) → P(x)) is also true, where the domains of all quantifiers are the same. 4. Use rules of inference to show that if ∀x(P(x) ∨ Q(x)), ∀x(¬Q(x) ∨ S(x)), ∀x(R(x) → ¬S(x)), and ∃x¬P(x) are true, then ∃x¬R(x) is tru 第五次: proof the function is define or undefine: f(n) = { n/2 -------------- if n is even { f(f((3n+1)/2)) --- if n is odd 第六次: # **考試**

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully