(\(p\)為質數)
\[a^p≡a\ (mod\ p)\]
\[a^{p-1}≡1\ (mod\ p)\]
首先先考慮\((b+1)^p\)的展開,模p:
\[ (b+1)^p= (\frac{p}{0})b^p+(\frac{p}{1})b^{p-1}+(\frac{p}{2})b^{p-2}...+(\frac{p}{p})b^{0}\ (mod\ p) \]
假設\((\frac{p}{k})\),k != 0 or p,分子有p,分母沒有p,因此p不會被約分掉,\((\frac{p}{k})\)是p的倍數,模p=0,因此
\[ (b+1)^p\ (mod\ p)\\ ≡(\frac{p}{0})b^p+(\frac{p}{p})b^{0}\ (mod\ p)\\ ≡b^p+1\ (mod\ p) \]
接著把\(b^p\)轉成((\(b\)-1)+1)\(^p\)的形式繼續展開
\[ (b+1)^p\ (mod\ p)\\ ≡b^p+1\ (mod\ p)\\ ≡((b-1)^p+1)+1\ (mod\ p)\\ ≡(((b-2)^p+1)+1)+1\ (mod\ p)\\ .\\ .\\ ≡(b+1)個1\ (mod\ p)\\ ≡b+1\ (mod\ p) \]
把\(b+1\)換成\(a\)
\[ a^p≡a\ (mod\ p) \]
\[\varphi (x)\]
在小於等於\(x\)的正整數中,與\(x\)互質的個數
(特別定義\(\varphi(1)=1\))
(\(p\)表質數)
\[\varphi (p)=p-1\]
除了\(p\)自己本身以外,其他數都與\(p\)互質。
(\(p\)表質數,n表次方)
\[\varphi (p^n)=p^n-p^{n-1}=p^n(1-\frac{1}{p})\]
因為和質數的次方不互質的數很少,因此可由所有的數減去和\(p^n\)不互質的數來計算。
如果要計算有幾個數不和\(p^n\)互值,那該數的質因數中一定要有至少一個質因數和\(p^n\)的質因數相同,也就是要有\(p\),因此可由\(p\)的倍數去構造,且要小於等於\(p^n\),所有的可能為:
\[
p*1,p*2,p*3\ ...\ ,p*p^{n-1}=p^n
\]
因此不與\(p^n\)互值的個數有\(p^{n-1}\)個
(\(P_i\)為質因數分解的底數)
\[
\varphi(n)=n(1-\frac1 P_1)(1-\frac1 P_2)...(1-\frac1 P_m)
\]
一個數的質因數分解可寫成第二點的形式
\(5600=2^5×5^2×7^1\)
由於歐拉函數是積性函數
\(\varphi(5600)=\varphi(2^5)×\varphi(5^2)×\varphi(7^1)\)
因此
\[
n={P_1}^{k_1}×{P_2}^{k_2}...×{P_m}^{k_m}\\
\varphi(n)=\varphi({P_1}^{k_1})×\varphi({P_2}^{k_2})...×\varphi({P_m}^{k_m})\\
={P_1}^{k_1}(1-\frac1 P_1)×{P_2}^{k_2}(1-\frac1 P_2)...×{P_m}^{k_m}(1-\frac1 P_m)\\
=n(1-\frac1 P_1)(1-\frac1 P_2)...(1-\frac1 P_m)
\]
int phi(int n){
if(n==1) return 1;
int ans=n;
for(int i=2;i*i<=n;i++){
if(n%i==0){
while(n%i==0) n/=i;
ans=ans*(i-1)/i;
}
}
if(n!=1) ans=ans*(n-1)/n;
return ans;
}
(\(p\)為質數)
\[a^{\varphi (p)}≡1\ (mod\ p)\]
尤拉定理為費馬小定理的推廣,由於
\[\varphi(p)=p-1\]
因此費馬小定理可改寫成
\[
a^{p}≡a\ (mod\ p)\\
a^{p-1}≡1\ (mod\ p)\\
a^{\varphi (p)}≡1\ (mod\ p)\\
\]
or
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up
Syntax | Example | Reference | |
---|---|---|---|
# Header | Header | 基本排版 | |
- Unordered List |
|
||
1. Ordered List |
|
||
- [ ] Todo List |
|
||
> Blockquote | Blockquote |
||
**Bold font** | Bold font | ||
*Italics font* | Italics font | ||
~~Strikethrough~~ | |||
19^th^ | 19th | ||
H~2~O | H2O | ||
++Inserted text++ | Inserted text | ||
==Marked text== | Marked text | ||
[link text](https:// "title") | Link | ||
 | Image | ||
`Code` | Code |
在筆記中貼入程式碼 | |
```javascript var i = 0; ``` |
|
||
:smile: | ![]() |
Emoji list | |
{%youtube youtube_id %} | Externals | ||
$L^aT_eX$ | LaTeX | ||
:::info This is a alert area. ::: |
This is a alert area. |
On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?
Please give us some advice and help us improve HackMD.
Syncing