HappyLego
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# DFT and FFT ###### tags: `Linear Algebra` --- What is DFT ---- DFT for Discrete Fourier Transform,顾名思义,DFT是一种转换方式,那是什么的转换方式呢?从线性代数的角度,简单的来说就是利用单位根去从多项式的一种表达形式转换为另外一种表达形式。DFT可以说是FFT的一部分。 Root of Unity --- 1的n次单位根(root of unity):$\omega_n =\sqrt[n]{1}=e^{2\pi i/n}$ 这里不多做说明,相关知识在GSLA第九章。直观上可以想象复平面上的单位圆被均分为n份。 Representation of Polynomial: --- **(1)coefficient represent:** 对于一个n阶多项式:$A(x)=a_0+a_1x+a_2x^2+…+a_{n-1}x^{n-1}$ 我们可以用一个coefficient vector来表示:$(a_0,a_1,…,a_{n-1})$ **(2)point-value represent:** 设$y_k=A(x_k)$,那么我们可以用n个点来确定一个n-1多项式: $\{(x_0,y_0),(x_1,y_1),…,(x_{n-1},y_{n-1})\}$ 这种用一组点来求对应的多项式的过程叫**多项式插值(interpolation)**。用这种表示方法去确定一个唯一的n-1阶多项式的条件是有n个$x$分量不同的点。 现证明:n个$x$分量不同的点可以唯一确定一个n-1阶多项式 **分析**:多项式的系数可以唯一确定一个多项式,所以我们把问题转换成:n个$x$分量不同的点可以唯一确定一个coefficient vector 首先我们有n个方程: $y_0=a_0+a_1x_0+a_2x_0^2+…+a_{n-1}x_0^{n-1}$ $y_1=a_0+a_1x_1+a_2x_1^2+…a_{n-1}x_1^{n-1}$ . . $y_{n-1}=a_0+a_1x_{n-1}+a_2x_{n-1}^2+…+a_{n-1}x_{n-1}^{n-1}$ 写成矩阵形式就是: $\begin{bmatrix}1&x_0\cdots&x_0^{n-1}\\1&x_1\cdots&x_1^{n-1}\\\vdots&\ddots&\vdots\\1&x_{n-1}\cdots&x_{n-1}^{n-1}\end{bmatrix}$ $\begin{pmatrix}a_0\\a_1\\\vdots\\a_{n-1}\end{pmatrix}$ =$\begin{pmatrix}y_0\\y_1\\\vdots\\y_{n-1}\end{pmatrix}$ 留意到这个矩阵是之前GSLA第五章提到过的Vandermonde matrix,它的行列式为:$\prod\limits_{0 \le j<i \le n-1}x_i-x_j$ 因为$x_i \not =x_j$,所以它的determinant不为0,即这是一个可逆矩阵,$Aa=y$,有唯一解为$a=A^{-1}y$ 所以n个不同点可以唯一确认一个n-1阶多项式 Q.E.D. The DFT --- 刚才我们证明了,用n个$x$分量不同的点可以唯一确定一个n-1阶多项式,所以我们可以通过巧妙的选择这n个点来达到一些目的。DFT选择了用$\omega_n^k$来作为n个点的$x$分量。 将$\omega_n^k$代入刚才的矩阵中,我们就得到了一个n阶Fourier matrix: $\begin{bmatrix}1&1\cdots&1\\1&\omega_n\cdots&\omega_n^{n-1}\\\vdots&\ddots&\vdots\\1&\omega_n^{n-1}\cdots&\omega_n^{(n-1)^2}\end{bmatrix}$ 记作$F_n$,$F_n{ij}=\omega_n^{(i-1)(j-1)}$ 记$y=(y_0,y_1,…,y_{n-1})$,其中$y_k=A(\omega_n^k)=\sum\limits_{j=0}^{n-1} a_j\omega_n^{kj}$ 记作$y=DFT_n(a)$,$a=DFT_n^{-1}(y)$ 这就是DFT的过程,$\Theta(n^2)$的复杂度,但是通过$\omega_n^k$的一些性质还有分治法,我们可以将复杂度下降为$\Theta(nlgn)$,其实就是FFT(Fast Fourier Transform) Cancelation Lemma --- root of unity:$\omega_n=e^{2\pi i/n}$ The cancelation lemma:$\omega_{dn}^{dk}=\omega_n^k$ **Proof**: $\omega_{dn}^{dk}=(e^{2\pi i/dn})^{dk}$=$e^{2dk\pi i/dn}$=$e^{2k\pi i/n}$=$\omega_n^k$ Halving Lemma --- First,$\omega_n^{n/2}=-1$ 直观上可以想象从复平面上(1,0)的位置沿单位圆转了半圈,落到(-1,0)这个点。 So,halving lemma: $\omega_n^{k+n/2}=\omega_n^k \omega_n^{n/2}=-\omega_n^k$ From DFT to FFT --- FFT用了分治的策略,对于多项式,分成奇偶次项是比较自然的思路,为了方便说明,我们设n是2的幂。 现在,对于原来的多项式: $A(x)=a_0+a_1x+a_2x^2+...+a_{n-1}x^{n-1}$ 分奇偶次项: $A^{even}(x)=a_0+a_2x^2+a_4x^4+...+a_{n-2}x^{n-2}$ $A^{odd}(x)=a_1x+a_3x^3+a_5x^5+...+a_{n-1}x^{n-1}$ 我们有:$A(x)=A^{even}(x)+A^{odd}(x)$ (1) 要达到分治的目的,我们希望把刚才拆分出的两个子问题变形为与原问题有相同的形式的问题,如: $A^{even}(\sqrt{x})=a_0+a_2x+a_4x^2+...+a_{n-2}x^{n-2/2}$,记作$A^{[0]}(x)$ $A^{even}(\sqrt{x})$和$A(x)$相比,形式上除了最高幂次是$A(x)$的一半且系数是$A(x)$的偶次系数之外,没有其他的变化,我们现在想将$A^{odd}(x)$也转变成这样的形式。 观察发现,$A^{odd}(x)/x$和$A^{even}(x)$有类似的结构,所以我们将它变形为: $A^{odd}(\sqrt{x})/x=a_1+a_3x+a_5x^2+...+a_{n-1}x^{n-2/2}$,记作$A^{[1]}(x)$ $\because A^{even}(\sqrt{x})=A^{[0]}(x)$ $\therefore A^{even}(x)=A^{[0]}(x^2)$ (2) $\because A^{odd}(\sqrt{x})/x=A^{[1]}(x)$ $\therefore A^{odd}(x)=xA^{[1]}(x^2)$ (3) 根据式子(1):$A(x)=A^{even}(x)+A^{odd}(x)$ 代入(2)、(3): $A(x)=A^{[0]}(x^2)+xA^{[1]}(x^2)$ (4) ------------ 在DFT中我们用$\omega_n^k$($1,\omega_n,\omega_n^2,...,\omega_n^{n-1}$)这n个点来进行插值,根据式子(4),我们在$A^{[1]}(x)$和$A^{[0]}(x)$中应该用$\omega_n^{2k}$($1,\omega_n^2,\omega_n^4,..,\omega_n^{2(n-1)}$)来进行插值。 又根据cancelation lemma:$\omega_{dn}^{dk}=\omega_n^k$,上下标同除以2: $1,\omega_n^2,\omega_n^4,..,\omega_n^n,...\omega_n^{2(n-1)}$=$1,\omega_{n/2},\omega_{n/2}^2,...,\omega_{n/2}^{n/2-1},\omega_{n/2}^{n/2},...,\omega_{n/2}^{n-1}$ 对于$\omega_{n/2}^{n/2}$之后的式子,都有$\omega_{n/2}^{n/2+k}$的形式 $(k=1,2,3,..,n/2-1)$ $\omega_{n/2}^{n/2+k}=\omega_{n/2}^{n/2} \omega_{n/2}^k=\omega_{n/2}^k$ 所以用$\omega_n^{2k}$插值实际上就是用$\omega_{n/2}^k$进行插值,又因为$A^{[0]}(x)$和$A^{[1]}(x)$都是$n/2$阶多项式,所以我们发现这其实就是两次$n/2$的DFT,我们成功地把原来的问题分成了两个size为原来的一半的子问题。 --------------- *Prove of Vandermonde Determinant --- -TBC-

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully