yue_charlie
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    --- tags: 應用統計 --- # 應用統計 R 101-2 ### **樣本空間與事件** 樣本空間 (sample space), Ω 或 S, 是一個隨機試驗所有可能結果所形成的集合 事件 (event), 樣本空間的任何子集 A、B… 都稱為事件 ### **集合的基本運算** $$ A∩B=\{x∈S|x∈A\ and\ x∈B\}\\ A∪B=\{x∈S|x∈A\ or\ x∈B\} → P(A∪B)=P(A)+P(B)−P(A∩B)\\ A^c=\{x∈S|x∉A\}\\ A−B=\{x∈S|x∈A\ and\ x∉B\}\\ A△B=(A−B)∪(B−A) → P(A△B)=P(A∪B)−P(A∩B)\\ $$ ### **笛摩根定律** $$ ∼(P∧Q)=(∼P)∨(∼Q)\\ ∼(P∨Q)=(∼P)∧(∼Q)\\ (\bigcup_{i=1}^{n}Ei)^c=(E1\ \cup\ E2\ \cup\ E3 ...\ \cup\ En)^c=E1\ \cap\ E2\ \cap\ E3 ...\ \cap\ En=\bigcap_{i=1}^{n}Ei^c\\ (\bigcap_{i=1}^{n}Ei)^c=(E1\ \cap\ E2\ \cap\ E3 ...\ \cap\ En)^c=E1\ \cup\ E2\ \cup\ E3 ...\ \cup\ En=\bigcup_{i=1}^{n}Ei^c $$ #### 練習 $$ \begin{multline} \shoveleft 若 S=\{1,2,3,4,5,7\}. A=\{1,2,3,4\},B=\{1,4,5\}\\ \shoveleft (A∩B)^c=A^c∪B^c=\{2,3,5,7\}\\ \shoveleft (A∪B)^c=A^c∩B^c=\{7\} \end{multline} $$ ### **Axioms of Probability(機率公設)** 機率公設: 若有一事件 E⊆S. P(E) 代表事件 E 發生的機率. 則 須滿足三個機率公設: $$ \begin{multline} \shoveleft 1.0≤P(E)≤1,\ \ E⊆S ← \rm Normality\\ \shoveleft 2.P(S)=1\ ←\ \rm Tautology Rule\\ \shoveleft 3.假設 E1,…,En 是互斥事件 (\rm mutually exclusive)\\ \end{multline} \\ \begin{split} P(\bigcup_{i=1}^{n}Ei)=\sum\limits_{i}^nP(Ei)←\rm Additivity\ Rule \end{split} $$ ### **機率性質:** $$ \begin{multline} \shoveleft 1.事件 A 的補集 A^c (\rm Complement): 對事件 A,P(A^c)=1−P(A)\\ \shoveleft 2.事件的聯集 (\rm Union) : P(A∪B)=P(A)+P(B)−P(A∩B)\\ \shoveleft 3.如果 A, B 互斥事件, 則 P(A∪B)=P(A)+P(B)\\ \shoveleft 4.對事件 A,B,\qquad P(A∪B)≤P(A)+P(B)\\ \shoveleft 5.以計數的角度\ (|⋅| 代表個數)\\ \shoveleft |A∪B∪C|=|A|+|B|+|C|−|A∩B|−|B∩C|−|C∩A|+|A∩B∩C|.\\ \shoveleft 6.推廣, 對事件 A1,A2,A3,\\ \end{multline}\\ \begin{split} P(A1∪A2∪A3)=&P(A1)+P(A2)+P(A3)\\& −P(A1∩A2)−P(A2∩A3)−P(A3∩A1)\\&+P(A1∩A2∩A3)\\ \end{split} $$ #### **練習** $$ \begin{multline} \shoveleft 1.如果汽車修理工在任何工作日維修 3、4、5、6、7 或 8 輛或更多汽車的機率\\ \shoveleft 分別為 0.12、0.19、0.28、0.24、0.10 和 0.07, 那麼第二天上班時他至少會維修 5 輛車概率是多少?\\ \shoveleft <\rm sol>1-0.12-0.19=0.69\\ \shoveleft 2.P(A^c∩B^c)=1+P(A∩B)−P(A)−P(B)\\ \shoveleft <\rm sol>P(A^c∩B^c)=P((A∪B)^c)=1-P(A∪B)=1+P(A∩B)−P(A)−P(B)\\ \shoveleft 3.今天拍畢業照, 鬧鐘響起, 3 個室友匆忙間拿起學士服…, 沒有一個拿對的可能性?\\ \shoveleft Ai 表第i個同學拿對的事件, i=1,2,3.\\ \shoveleft A1∪A2∪A3 代表有人拿對的事件. 答案 →1−P(A1∪A2∪A3) \end{multline} $$ ### **計數的方式:「排列」與「組合」** $$ \begin{multline} \shoveleft 1.「排列」是從 n 個物體中挑出 r 個按給定順序排開.\\ \shoveleft 這種排列的可能方法數以 P(n,r)=P_r^n 表示 \end{multline}\\ \begin{split} P(n,r)=\dfrac{n!}{(n-r)!}=C(n,r)\times r! \end{split} $$ $$ \begin{multline} \shoveleft 2.「組合」是從 n 個物體中挑出 r 個排開, 其中順序無關緊要.\\ \shoveleft 這種排列的可能數由 C(n,r)=C_r^n 表示. 表示\\ \end{multline}\\ \begin{split} C(n,r)=\dfrac{n!}{r!(n-r)!} \end{split} $$ $$ \begin{multline} \shoveleft 3. 假設 n 個物體中, \\ \shoveleft 其中 n_1 是一種類型 (彼此不可區分), n_2 是第二種類型, … , n_k 是第 k 個類型\\ \shoveleft 所以 n=n1+n2+…,nk. 那麼 n 個物體的不同排列的方法數是\\ \end{multline}\\ \begin{split} P(n,n1,…,nk)=\dfrac{n!}{n_1!,...,n_k!} \end{split} $$ ### **推廣 A1,A2,…,An, n 個事件的排容原理 (inclusion-exclusion)** $$ \begin{split} P(A_1∪A_2∪...∪A_n)=&\sum\limits_{i = 1}^n{P(A_i)}-\sum\limits_{i_i<i_2}^n{P(A_{i1}∩A_{i2})}\\ &+\sum\limits_{i_i<i_2<i_3}^n{P(A_{i1}∩A_{i2}∩A_{i3})}\\ &-\sum\limits_{i_i<i_2<i_3<i_$}^n{P(A_{i1}∩A_{i2}∩A_{i3}∩A_{i4})}\\ &+...\\ &+(-1)^{n+1}P(A_{1}∩A_{2}∩..∩A_{n}) \end{split} $$ ### **次可加性(Subadditivity, Boole's inequality)** $$ P(\bigcup_{i=1}^{\infty}Ai)\leq \sum_{i=1}^{\infty}P(Ai)\\ 因為\bigcup_{i=1}^{\infty}Ai=A1∪(\bar{A_1}∩A2)∪⋯∪(\bar{A_1}∩⋯∩\overline{A_{n-1}}∩An)∪⋯ $$ #### **例子: 想要瞭解三個地區的平均收入是否相等?** 甲地平均收入 = 乙地平均收入 = 丙地平均收入 如果你有 A1 事件: 甲地平均收入 = 乙地平均收入, 有95%的信心會是可信的. 且 A2 事件: 乙地平均收入 = 丙地平均收入, 也有95%的信心會是可信的. 那 甲、乙、丙 三個地區的平均收入相等想法, 是否也有95%的信心? \<Ans\> $$ \\ \\A1∩A2=甲、乙、丙 三個地區的平均收入相等\\ P(A_1∩A_2)=1−P(\overline{A_1∩A_2})\\ =1−P(\bar{A_1}∪\bar{A_2}) 使用次可加性\\ ≥1−(P(\bar{A_1})+P(\bar{A_2}))=0.90\\ 有95\%的信心? 只知道信心會大於90\%! $$ ### **條件機率 (Conditional probability)** $$ 若P(B)≠0, 則已知 B 事件發生, 求 A 事件發生的機率, 記為\\ P(A\mid B)=\dfrac{P(B \cap A)}{P(B)} $$ #### **練習** $$ \begin{multline} \shoveleft 1.台灣蓮霧年產量約5 萬4,891 公噸. 我國蓮霧去年出口總計4942公噸, 其中有4792\\ \shoveleft 公噸都銷往中國大陸. (中國禁止出口,僅僅影響蓮霧影響9\%.)\\ \end{multline}\\ \begin{split} P(出口)=\dfrac{4942}{54891}≈0.09\\ P(銷往中國∣出口)=\dfrac{4792}{4942}≈0.97\\ \end{split} $$ $$ \begin{multline} 2.釋迦年產量64,000 公噸. 去年出口總共約1萬4284公噸, 其中有1萬3588公噸銷往中\\ \shoveleft 國. (禁止出口, 影響較蓮霧大, 影響約20\%.)\\ \end{multline}\\ \begin{split} P(出口)=\dfrac{14284}{64000}≈0.223\\ P(銷往中國∣出口)=\dfrac{13588}{14284}≈0.951\\ \end{split} $$ $$ \begin{multline} \shoveleft 3.假設有一個遊戲, 不停地擲骰子, 直到得到點數 1 為止.此一試驗的投擲次數, \\ \shoveleft 取值範圍是 {1,2,3,…},假設 Ai 表示在第 i 次投擲前, 點數 1 都未出現的事件. 則\\ P(A_5) 的機率為?\\ P(A_5)=(5/6)^4\\ P(A_{15}∣A_{10}) 的機率為?\\ P(A_{15}∣A_{10})=\dfrac{P(A_{15}\cap A_{10})}{A_{10}}=\dfrac{A_{15}}{A_{10}}=\dfrac{(5/6)^{14}}{(5/6)^{9}}=(5/6)^{5}\\ \shoveleft 假設你知道機率的求算 P(第 i 次投擲前, 點數 1 都未出現) = q^{i−1}=(5/6)^{i−1} \end{multline} $$ ### **乘法規則** $$ 條件機率定義蘊含: 若 A,B⊆S,\\ P(A\mid B)=\dfrac{P(B \cap A)}{P(B)}\iff P(B \cap A)=P(A\mid B)P(B)\\ P(A \cap B)=P(A\mid B)P(B)=P(B\mid A)P(A)\\ 推廣:\\ P(A_1∩A_2∩⋯∩A_k)\\ =P(A_1)P(A_2∣A_1)P(A_3∣A_2∩A_1)⋯P(A_k∣A_1∩A_2∩⋯∩A_{k−1}) $$ #### **練習** 1.假設有 A、B 兩袋. A袋中有藍球 3 個、白球 5 個; B袋中有藍球 2 個、白球 7 個、紅球 6 個. 若選到 A 袋的機率是 B 袋的3倍, 今從 A 袋中, 隨機抽取一球, 此球是藍色球的機率? $$ P( 此球是藍色∣ A 袋)=\dfrac{3}{8} $$ 2.擲骰子兩次. 事件 A 代表第一次結果是點數為 3 的事件; 而事件 B 代表兩次結果點數和為7的事件. 則 P(A∣B) 為? $$ P(A∣B)=P(第一次是3\mid 兩次加總7)=\dfrac{1}{6} $$ 3.一個袋子有7個紅色和6個白色的。 無置換的隨機抽出大小為3的樣本, 3球都是紅球的機率? 令 Ri 表示第 i 次抽取為紅球的事件 $$ P(R_1∩R_2∩R_3)=P(R_1)P(R_2|R_1)P(R_3|R_1∩R_2)\\ =\dfrac{7}{13}\dfrac{1}{2}\dfrac{5}{11}=\dfrac{15}{169} $$ 4.假設有 A、B 兩袋. A袋中有藍球 3 個、白球 5 個; B袋中有藍球 2 個、白球 7 個、紅球 6 個. 若選到 A 袋的機率是 B 袋的3倍, 今隨機抽取一球, 此球來自 A 袋且是藍色球的機率? $$ 設抽到A袋的事件為X, 抽到藍色球的事件為Y.\\ P(X∩Y)=P(Y∣X)P(X)\\ =\dfrac{3}{8}\dfrac{3}{4}=\dfrac{9}{32}\\ $$ ### **獨立事件** $$ 定義事件 A,B∈B 為統計獨立(\rm Statistically Independent)\\ A,B\ Independent⟷P(A∩B)=P(A)P(B)\\ 所以獨立蘊含 P(A|B)=P(A), P(B|A)=P(B).\\ 互斥事件和獨立事件是兩個不同的觀念\\ 若事件 A,B⊆S 是互斥事件, 則A,B⊆S 不為獨立事件 $$ #### 例子 1.保險公司發現, 75%的保戶年紀大(等)於45歲以上, 60% 的保戶是男性, 又 50% 的保戶是已婚. 今假設保險公司的保戶年紀、性別、婚姻狀況皆為獨立。 今隨機抽取一位保戶, * 已知為女性且是已婚的機率? $$ 0.4*0.5=0.2=20\% $$ * 已知為女性或是已婚的機率? $$ 0.4+0.5-0.2=0.7=70\% $$ * 已知為女性且是已婚, 該保戶年紀小於45歲的機率? $$ 0.2*0.25=0.05=5\% $$ 2.假設有 A、B 兩袋. A袋中有藍球 3 個、白球 5 個; B袋中有藍球 2 個、白球 7 個、紅球 6 個. 若選到 A 袋的機率是 B 袋的3倍, 今隨機抽取一球, 此球來自 A 袋且是藍色球的機率? $$ 設抽到A袋的事件為X, 抽到藍色球的事件為Y.\\ P(X∩Y)=P(Y∣X)P(X)\\ =\dfrac{3}{8}\dfrac{3}{4}=\dfrac{9}{32}\\ $$ 3.從普通的52張紙牌中隨機選擇兩張紙牌,獲得兩張 Ace 的概率是多少?令 B 為第一張牌為Ace的事件, 而A為第二張牌為Ace的事件. $$ 古典機率 P(B∩A)=C(4,2)/C(52,2)\\ 條件機率 P(B∩A)=P(A∣B)P(B)=(3/51)(4/52) $$ 4.一個箱子裡包含4個紅色和4個藍色的球.4次從碗中無置換的隨機挑選兩個球. 你每次選一個紅色和藍色的球的概率是多少? $$ 設R_i $$ ### **分割** $$ 樣本空間的一個分割 (\rm A\ Partition\ of\ Ω): \\ 若 Ai,…,An 是 Ω 的一個 partition 若且唯若(iff) \\ Ai,…,An 是 mutually\ exclusive\ and \ \ exhaustive.\\ \bigcup_{i=1}^{n}A_i= Ω\ and \ A_i\cap A_j=∅, ∀i,j $$ #### **例子** $$ B\ 和 \bar B 是\ Ω\ 的一個分割\\ P(A)=P(A \cap B)+P(A \cap \bar B)\\ =P(A\mid B)P(B)+P(A\mid \bar B)P(\bar B) $$ ### **全機率定律 (Law of Total Probability)** $$ 若 Bi,…,Bn 是 S 的一個 partition, 則\\ P(A)=\sum_{i=1}^{n}P(A\cap B_i)=\sum_{i=1}^{n}P(A\mid B_i)P(B_i) $$ ### **貝氏定理 (Bayes’ Theorem)** ![](https://i.imgur.com/1okkmei.png) $$ 推廣, 若 Ai,…,An 是 Ω 的一個 partition, B 為 Ω 中的事件.則\\ P(A_j\mid B)=\dfrac{P(B\mid A_j)P(A_j)}{\sum_{i=1}^nP(B∣Ai)P(Ai)}, ∀j. $$ #### **例子** 1.設甲袋中有藍球 3 個、白球 5 個; 乙袋中有藍球 2 個、白球 1 個、紅球 2 個. 先依機會均等的原則選出甲袋或乙袋, 再從中取出一球. 今已知抽出是藍色球, 求此球來自甲袋的機率. (設 A 代表選出甲袋的事件, B 代表取出藍球的事件)(求P(A∣B)) $$ P(A∣B)=\dfrac{P(A\cap B)}{P(B)}=\dfrac{3}{5} $$ 2.設 D 為在一族群中某人患有此稀有疾病的事件, P(D)=0.0001. 若 B 表某人檢驗結果為陽性反應的事件. 今若某人有病的情形下有99%的機會可被檢驗出, 即 P(B∣D)=0.99. 此檢驗的假陽性機會為0.1%, 即 $$ P(B∣\bar {D})=0.001.\\ 則此人檢驗結果為陽性的情形下,確實有此稀有疾病的機率是多少? 即 P(D∣B)\\ P(D\mid B)=\dfrac{P(B \mid D)*P(D)}{P(B)}=\dfrac{P(B \mid D)*P(D)}{P(B\mid D)P(D)+P(B\mid \bar D)P(\bar D)}\\ =\dfrac{0.99*0.0001}{0.99*0.0001+0.001*0.9999}\approx0.09 $$ 3.貝氏搜尋: 有一飛機失蹤, 依經驗判斷會墜毀在三個可能的地區, 且失事機率依序評估為 0.20,0.43,0.37. 一般而言常因地形險峻導致, 即使墜落該地區, 搜尋結果可能是找不到飛機. 若 βi, i=1,2,3 表示該飛機若墜毀在該地區, 搜尋該地區未能被找到的機率值. 假設 βi 依序為 0.25,0.80,0.65. 今天從第二區開始搜尋, 若搜尋結果沒發現失蹤飛機, 試問該飛機墜落於第 i 區的機率是多少? 假設 Ri: 飛機墜落於第 i 區, i=1,2,3., N_2: 搜尋第二區結果沒發現失蹤飛機. $$ P(R_2\mid N_2)=\dfrac{P(R_2 \cap N_2)}{P(N_2)}=\dfrac{P(R_2 \cap N_2)}{\sum_{i=1}^3P( N_2∣R_i)P(R_i)}\\ =\dfrac{P(N_2 \mid R_2)P(R_2)}{\sum_{i=1}^3P( N_2∣R_i)P(R_i)}\\ =\dfrac{0.8*0.43}{1*0.2+0.8*0.43+1*0.37}=0.3764\\ (若墜落在1區找了2區必找不到=>P( N_2∣R_i)=1)\\ $$ $$ P(R_1\mid N_2)=\dfrac{P(R_1 \cap N_2)}{P(N_2)}=\dfrac{P(R_1 \cap N_2)}{\sum_{i=1}^3P( N_2∣R_i)P(R_i)}\\ =\dfrac{P(N_2 \mid R_1)P(R_2)}{\sum_{i=1}^3P( N_2∣R_i)P(R_i)}\\ =\dfrac{1*0.2}{1*0.2+0.8*0.43+1*0.37}=0.2188\\ $$ $$ P(R_3\mid N_2)=\dfrac{P(R_3 \cap N_2)}{P(N_2)}=\dfrac{P(R_3 \cap N_2)}{\sum_{i=1}^3P( N_2∣R_i)P(R_i)}\\ =\dfrac{P(N_2 \mid R_3)P(R_3)}{\sum_{i=1}^3P( N_2∣R_i)P(R_i)}\\ =\dfrac{1*0.37}{1*0.2+0.8*0.43+1*0.37}=0.4048\\ $$

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully