---
tags: linux2022
---
# 2022q1 Homework1 (lab0)
contributed by < `Xx-oX` >
## 實驗環境
```shell
$ gcc --version
gcc (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0
$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 43 bits physical, 48 bits virtual
CPU(s): 8
On-line CPU(s) list: 0-7
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 1
NUMA node(s): 1
Vendor ID: AuthenticAMD
CPU family: 23
Model: 17
Model name: AMD Ryzen 7 2700U with Radeon Vega Mobile Gfx
Stepping: 0
Frequency boost: enabled
CPU MHz: 1700.000
CPU max MHz: 2200.0000
CPU min MHz: 1600.0000
BogoMIPS: 4391.49
Virtualization: AMD-V
L1d cache: 128 KiB
L1i cache: 256 KiB
L2 cache: 2 MiB
L3 cache: 4 MiB
NUMA node0 CPU(s): 0-7
```
## 開發過程 - queue.c
### q_new
運用 `INIT_LIST_HEAD`,將 `head` 的 `next` 跟 `prev` 指向自己
```c
struct list_head *q_new()
{
struct list_head *head = malloc(sizeof(struct list_head));
if (!head)
return NULL;
INIT_LIST_HEAD(head);
return head;
}
```
### q_free
利用 `container_of` 找到目前 `list_head` 指向的 `element_t`,並釋放空間
:::warning
for 迴圈的部份之後會改用 for_each 巨集處理
:::
:::success
改成使用 list_for_each_entry_safe 巨集,以精簡程式碼
:::
```c
void q_free(struct list_head *l)
{
if (!l)
return;
element_t *entry, *safe;
list_for_each_entry_safe (entry, safe, l, list)
q_release_element(entry);
free(l);
}
```
### q_insert_head
分開檢查 `head` 以避免不必要的 `malloc`
`strlen(s)` + 1 是為了結尾 `'\0'` 的空間
將 `strlen(s)` + 1 存起來,避免重複運算,以通過 `trace-17` (見後面 `Make test` 段落)
最後利用 `list_add` 來加入佇列
```c=
bool q_insert_head(struct list_head *head, char *s)
{
if (!head)
return false;
element_t *el = malloc(sizeof(element_t));
if (!el)
return false;
size_t len = strlen(s) + 1;
el->value = malloc(sizeof(char) * len);
if (!el->value) {
free(el);
return false;
}
memcpy(el->value, s, len);
list_add(&el->list, head);
return true;
}
```
>在第12行 `q_release_element(el)` 中,
>不確定 `free(el->value)` 的必要性 => 我認為是多餘的,理由如下
>> 查詢 `manpage`:
> The free() function frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc(), or realloc().
> Otherwise, or if free(ptr) has already been called before, undefined behavior occurs.
> If ptr is NULL, no operation is performed.
>
>會執行這行表示 `el->value` 的值為 `NULL`,根據上面敘述,不會執行任何動作
> TODO: 使用記憶體分析工具,搭配實驗來探討 :notes: jserv
:::info
:::spoiler 實驗
設計兩個程式 test1.c test2.c
```c
#include <stdlib.h>
struct space {
char padding[16];
char *var;
};
int main()
{
struct space *s = malloc(sizeof(struct space));
s->var = NULL;
/*test 1*/
free(s);
/*test 2*/
free(s->var);
free(s);
return 0;
}
```
執行 `gcc -S [src]` 查看組合語言發現
```shell
~/tmp » diff test1.s test2.s
1c1
< .file "test1.c"
---
> .file "test2.c"
19a20,23
> movq -8(%rbp), %rax
> movq 16(%rax), %rax
> movq %rax, %rdi
> call free@PLT
```
多了一段 subroutine call
但若加入 `-O1` 參數執行編譯器最佳化 `gcc -O1 -S [src]` 之後則兩者沒有差別
```shell
~/tmp » diff test1.s test2.s
1c1
< .file "test1.c"
---
> .file "test2.c"
```
而 `-O1` 是本次作業中採用的最佳化參數,由此可見有沒有 `free(s->var)` 在 `s->var == NULL` 時沒有區別,跟設想中的一樣。
記憶體分析:
結合 test1 (-> `fun_a`), test2 (-> `fun_b`) 再加入兩個對照組 (`fun_c`, `fun_d`)
依照順序分時執行
(沒有使用編譯器最佳化)
```c
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
struct space {
char padding[12];
char *var;
};
void fun_a()
{
struct space *s = malloc(sizeof(struct space));
s->var = NULL;
sleep(1);
free(s->var);
free(s);
sleep(1);
}
void fun_b()
{
struct space *s = malloc(sizeof(struct space));
s->var = NULL;
sleep(1);
free(s);
sleep(1);
}
void fun_c()
{
struct space *s = malloc(sizeof(struct space));
s->var = strdup("ccc");
sleep(1);
free(s->var);
free(s);
sleep(1);
}
void fun_d()
{
struct space *s = malloc(sizeof(struct space));
s->var = strdup("ddd");
sleep(1);
free(s);
sleep(1);
}
int main(int argc, char *argv[])
{
fun_a();
fun_b();
fun_c();
fun_d();
return 0;
}
```
使用 `valgrind-massif` 分析 heap 的使用情形
並參考去年 [jasonmatobo](https://hackmd.io/@jasonmatobo/Linux_Kernel_Note_2021/%2F%40jasonmatobo%2F2021q1_homweork_lab0#%E6%B8%AC%E8%A9%A6%E7%B5%90%E6%9E%9C) 同學的作法,
用 `massif-visuallizer` 呈現結果,得到下圖
![test.png](https://i.imgur.com/x9MQ5xb.png)
可以看出 `fun_a`, `fun_b` 對於 `heap` 的使用是一樣的,由此佐證前述之猜測。
(其中 `fun_d` 會導致 memory-leak,因為沒有將 `strdup` 產生出的空間釋出)
:::
### q_insert_tail
與 `q_insert_head` 相似,改用 `list_add_tail` 來加入佇列的尾端
```c
bool q_insert_tail(struct list_head *head, char *s)
{
if (!head)
return false;
element_t *el = malloc(sizeof(element_t));
if (!el)
return false;
size_t len = strlen(s) + 1;
el->value = malloc(sizeof(char) * len);
if (!el->value) {
free(el);
return false;
}
memcpy(el->value, s, len);
list_add_tail(&el->list, head);
return true;
}
```
### q_remove_head
斷開 `head` 連結,並將 `element` 中的內容複製到 `sp` 中
`strlen` 不會計算 `null terminator`
>The strlen() function calculates the length of the string pointed to by s, excluding the terminating null byte ('\0').
```c
element_t *q_remove_head(struct list_head *head, char *sp, size_t bufsize)
{
if (!head || !sp)
return NULL;
struct list_head *node = head->next;
if (node == head)
return NULL;
element_t *el = list_entry(node, element_t, list);
size_t len = strnlen(el->value, bufsize - 1);
memcpy(sp, el->value, len);
*(sp + len * sizeof(char)) = '\0';
list_del(node);
return el;
}
```
> :::spoiler 新增巨集 `min`
> 參考自 [minmax](https://hackmd.io/@sysprog/linux-macro-minmax)
> ```c
> #define min(x, y) (x) < (y) ? (x) : (y)
> ```
> :::
:::success
後來使用 `strnlen` 取代 min 的功能
:::
### q_remove_tail
跟 `q_remove_head` 相似,改為移除 `tail`
```c
element_t *q_remove_tail(struct list_head *head, char *sp, size_t bufsize)
{
if (!head || !sp)
return NULL;
struct list_head *node = head->prev;
if (node == head)
return NULL;
element_t *el = list_entry(node, element_t, list);
size_t len = strnlen(el->value, bufsize - 1);
memcpy(sp, el->value, len);
*(sp + len * sizeof(char)) = '\0';
list_del(node);
return el;
}
```
### q_release_element
沒有更動
```c
void q_release_element(element_t *e)
{
free(e->value);
free(e);
}
```
### q_size
照抄自作業要求中的牛刀小試
```c
int q_size(struct list_head *head)
{
if (!head)
return 0;
int len = 0;
struct list_head *pos;
list_for_each (pos, head)
len++;
return len;
}
```
### q_delete_mid
從兩邊夾擠找到中間節點,利用 index 來判斷位置
新增巨集 `del_node` 來刪除節點
```c
#define del_node(node) \
{ \
element_t *el = list_entry(node, element_t, list); \
list_del(node); \
q_release_element(el); \
}
```
```c
bool q_delete_mid(struct list_head *head)
{
// https://leetcode.com/problems/delete-the-middle-node-of-a-linked-list/
if (!head || list_empty(head))
return false;
// squeeze to find the middle-node
struct list_head *p = head->next;
int hindex = 0, tindex = q_size(head) - 1; // O(n)
for (; hindex < tindex; hindex++, tindex--, p = p->next)
;
/*
* hp: go from head to tail
* tp: go from tail to head
* odd nodes: head -> ... -> hp == tp -> ...
* even nodes: head -> ... -> tp -> hp -> ...
* thus delete "hp"
* => simplify to one pointer p
*/
del_node(p); // delete middle node
return true;
}
```
### q_delete_dup
利用雙重迴圈來查找重複的節點
新增巨集 `get_value`,縮短程式碼
```c
#define get_value(node) list_entry(node, element_t, list)->value
```
```c
bool q_delete_dup(struct list_head *head)
{
// https://leetcode.com/problems/remove-duplicates-from-sorted-list-ii/
if (!head)
return false;
if (list_empty(head))
return true;
struct list_head *p = head->next;
for (; p != head && p->next != head;) {
if (strcmp(get_value(p), get_value(p->next)) == 0) {
struct list_head *np = p->next;
char *str = strdup(get_value(np));
for (; np->next != head && strcmp(str, get_value(np->next)) == 0;) {
np = np->next;
del_node(np->prev);
}
del_node(np);
free(str); // release momery allocated by strdup
p = p->next;
del_node(p->prev);
} else {
p = p->next;
}
}
return true;
}
```
### q_swap
節點交換之後, `p` 的 `next` 也改為指向本來的下下個節點,所以直接遍歷即可
新增內部函式 `swap_node`,交換任意兩個節點(相鄰 / 不相鄰)
:::spoiler 詳細討論
* a, b 為要交換的節點
* 相鄰的情形
從 ... -> m -> a -> b -> n -> ...
移除 a, b => ... -> m -> n -> ...
最後加回 a, b => ... -> m -> b -> a -> n -> ...
* 不相鄰的情形
從 ... -> m -> a -> c -> ... -> d -> b -> n -> ...
移除 a, b => ... -> m -> c -> ... -> d -> n -> ..., a, b
最後加回 a, b => ... -> m -> b -> c -> ... -> d -> a -> n -> ...
:::
```c
static inline void swap_node(struct list_head *a, struct list_head *b)
{
struct list_head *m = a->prev;
struct list_head *n = b->next;
/*remove a*/
m->next = a->next;
a->next->prev = m;
/*remove b*/
b->prev->next = n;
n->prev = b->prev;
/*insert b*/
m->next->prev = b;
b->next = m->next;
m->next = b;
b->prev = m;
/*insert a*/
n->prev->next = a;
a->prev = n->prev;
n->prev = a;
a->next = n;
}
```
> 寫成 static inline 避免額外的 `branch` ,類似巨集展開的方式
> :::spoiler 寫成巨集的形式會無法正常執行,尚在找出問題點(或許跟編譯器最佳化有關)
>```c
>#define swap_node(a, b) \
> { \
> struct list_head *m = a->prev; \
> struct list_head *n = b->next; \
> /*remove a*/ \
> m->next = a->next; \
> a->next->prev = m; \
> /*remove b*/ \
> b->prev->next = n; \
> n->prev = b->prev; \
> /*insert b*/ \
> m->next->prev = b; \
> b->next = m->next; \
> m->next = b; \
> b->prev = m; \
> /*insert a*/ \
> n->prev->next = a; \
> a->prev = n->prev; \
> n->prev = a; \
> a->next = n; \
> }
>```
>:::
```c
void q_swap(struct list_head *head)
{
// https://leetcode.com/problems/swap-nodes-in-pairs/
if (!head || list_empty(head))
return;
struct list_head *p = head->next;
for (; p != head && p->next != head; p = p->next) {
swap_node_adjacent(p, p->next);
}
}
```
### q_reverse
與 `q_delete_mid` 相似,從兩端夾擠並利用 `swap_node` 逐步交換
```c
void q_reverse(struct list_head *head)
{
if (!head || list_empty(head))
return;
// hp: head pointer, tp: tail pointer
struct list_head *hp = head->next;
struct list_head *tp = head->prev;
int hindex = 0, tindex = q_size(head) - 1; // O(n)
for (; hindex < tindex; hindex++, tindex--) {
struct list_head *a = hp;
struct list_head *b = tp;
hp = hp->next;
tp = tp->prev;
swap_node(a, b);
}
}
```
### q_sort
使用**遞迴**形式的 `merge sort` 來實作
分成兩個函式: 拆兩半用的 `merge_sort` 以及合併用的 `merge`
#### merge_sort
利用 [Floyd's Algorithm](http://web.ntnu.edu.tw/~algo/Function.html#4) 找到中央節點 `p`,並分成兩個 `circular doubly-linked list` (以 `h` 為首以及以 `p`為首)
此處的 `h` 是佇列中的第一個元素,而不是利用 `q_new` 得到的 `head`
> 因為無法配置記憶體的限制 (`qtest.c` 中第 674 行 `set_noallocate_mode(true)`),故將原本的 `head` 移除,直接以佇列中第一個元素取代
將兩段佇列遞迴呼叫 `merge_sort`,再進行合併
```c
struct list_head *merge_sort(struct list_head *h)
{
// single
if (h->next == h)
return h;
// Floyd's Algorithm, a.k.a. Tortoise and Hare Algorithm
struct list_head *hare = h->next, *tortoise = h->next;
for (; hare->next != h && hare->next->next != h;
tortoise = tortoise->next, hare = hare->next->next)
;
struct list_head *p = tortoise;
/*
* Split into two circular-doubly-linked list.
* before: -> h -> ... -> ht -> p -> ... -> pt ->
* result: -> h -> ... -> ht -> , -> p -> ... -> pt ->
*/
struct list_head *ht = p->prev;
struct list_head *pt = h->prev;
ht->next = h;
h->prev = ht;
pt->next = p;
p->prev = pt;
// recurision
h = merge_sort(h);
p = merge_sort(p);
// merge into one list
return merge(h, p);
}
```
#### merge
先判斷是否為不平衡的情形,如果是則直接將兩個佇列相接 (參見下方 `Make test` 段落)
參考 `list_splice` 新增函式 `splice` 來串接兩個被移除 `head` 的佇列
```c
static inline void splice(struct list_head *a, struct list_head *b)
{
struct list_head *a_tail = a->prev;
struct list_head *b_tail = b->prev;
a_tail->next = b;
b->prev = a_tail;
b_tail->next = a;
a->prev = b_tail;
}
```
將兩個佇列先攤平( flatten )以便進行迴圈條件判斷
> 攤平亦即拆開頭尾的連接部份,使其不再循環
此處參考[你所不知道的 C 語言:linked list 和非連續記憶體](https://hackmd.io/@sysprog/c-linked-list#%E5%89%8D%E8%A8%80)中「從 Linux 核心的藝術談起」下的案例探討,使用 `pointer to pointer` 的技巧來省去一次條件判斷
> 即 `struct list_head **cmp` ,用來移動 `rp` 跟 `lp` 中對應元素數值較小者
第二次迴圈用來將剩下的元素填入
> 舉例說明:合併 `r = [1, 2, 3]` 與 `l = [4, 5, 6]` 時,
r 中的元素會先被用盡( `rp == NULL` ),而 `l` 卻還是滿的 ( `lp == l` ),此時就需要第二個迴圈來將 `l` 中的元素填入
```c
struct list_head *merge(struct list_head *r, struct list_head *l)
{
// for unbalanced case like 1, ..., 1 vs 2, ..., 2
if (strcmp(get_value(r->prev), get_value(l)) < 0 ||
strcmp(get_value(r->prev), get_value(l)) == 0) {
splice(r, l);
return r;
} else if (strcmp(get_value(l->prev), get_value(r)) < 0) {
splice(l, r);
return l;
}
/*
* flatten
* NULL -> r -> ... -> rt -> NULL
* NULL -> l -> ... -> lt -> NULL
*/
r->prev->next = NULL; // rt->next = NULL
r->prev = NULL;
l->prev->next = NULL; // lt->next = NULL
l->prev = NULL;
// decide head
struct list_head *rp = r, *lp = l;
struct list_head **cmp;
cmp = (strcmp(get_value(rp), get_value(lp)) < 0) ? &rp : &lp;
struct list_head *h = *cmp;
struct list_head *tail = h;
*cmp = (*cmp)->next;
for (cmp = NULL; rp && lp; *cmp = (*cmp)->next, tail = tail->next) {
cmp = (strcmp(get_value(rp), get_value(lp)) < 0) ? &rp : &lp;
tail->next = *cmp;
(*cmp)->prev = tail;
}
// connect the last(rest) node
cmp = rp ? &rp : &lp;
for (; *cmp; *cmp = (*cmp)->next, tail = tail->next) {
tail->next = *cmp;
tail->next->prev = tail;
}
// circulate the list
tail->next = h;
h->prev = tail;
return h;
}
```
最後將 `merge_sort` 的結果接回 `head` 即完成
```c
void q_sort(struct list_head *head)
{
if (!head || list_empty(head) || list_is_singular(head))
return;
// dehead, and remake the circle
struct list_head *p = head->next;
p->prev = head->prev;
head->prev->next = p;
p = merge_sort(p);
// conect result p to head
head->next = p;
head->prev = p->prev;
p->prev->next = head;
p->prev = head;
}
```
:::spoiler 更動紀錄
> [原始碼](https://github.com/Xx-oX/lab0-c/blob/master/queue.c)中使用 `#define MERGE_SORT_DEBUG` 搭配 `#ifdef MERGE_SORT_DEBUG`, `#endif` 來顯示除錯訊息
>
> 將原本比較第一個字元改成使用 `strcmp` 來比較第一個字串 => 通過 `make test`
> ```c
> // before
> cmp = (get_value(rp)[0] < get_value(lp)[0]) ? &rp : &lp;
> // after
> cmp = (strcmp(get_value(rp), get_value(lp)) < 0) ? &rp : &lp;
> ```
> 將找尋中間節點的方法改成 Floyd's Algorithm
> ```c
> // before
> int hindex = 0, tindex = 0;
> struct list_head *p;
> for (p = h->next; p != h; tindex++, p = p->next)
> ;
> // find middle node
> p = h;
> for (; hindex < tindex; hindex++, tindex--, p = p->next)
> ;
> // after
> struct list_head *hare = h->next, *tortoise = h->next;
> for (; hare->next != h && hare->next->next != h;
> tortoise = tortoise->next, hare = hare->next->next)
> ;
> struct list_head *p = tortoise;
> ```
> 但依舊過不了 `trace-14`
:::
:::success
### Make Test
本地端 `make test` 可以全部通過,但是在 github action 中無法通過 trace-14 跟 trace-17
其中 trace-14 是因為排序的複雜度過高
首先改用 [Floyd's Algorithm](http://web.ntnu.edu.tw/~algo/Function.html#4) 來改良 `q_sort` 找尋中間節點的方法 => 但依然無法通過
後來觀察 `trace/trace-14-perf.cmd`
```shell
# Test performance of insert_tail, reverse, and sort
option fail 0
option malloc 0
new
ih dolphin 1000000
it gerbil 1000000
reverse
sort
```
發現要對兩個極度不平衡的佇列作排序,於是針對這樣的情形作優化 => 成功通過!
> 此處的不平衡指的是如 [1, 1, 2, 2] 與 [3, 3, 3, 3]
> 依照原先的方法會遍歷兩個佇列,但其實可以直接將後者接上前者
> => [1, 1, 2, 2, 3, 3, 3, 3]
> 會大幅降低這類情形的複雜度
而 trace-17 則是因為多次計算 `strlen` ,導致在 `insert_head` 時超出常數時間。
因此只要先將 strlen 的結果存起來便可解決。 (已通過)
:::
## 研讀 Linux 核心原始程式碼的 lib/list_sort.c
研讀程式碼以及參考 [freshLiver](https://hackmd.io/@freshLiver/2022q1-hw1#%E7%90%86%E8%A7%A3-Linux-%E6%A0%B8%E5%BF%83%E4%B8%AD%E7%9A%84%E6%8E%92%E5%BA%8F%E5%AF%A6%E4%BD%9C) , [kdnvt](https://hackmd.io/@5ux520T8Sd-OoYfdxZR55Q/SyzDKJ9y9#%E9%96%8B%E7%99%BC%E7%92%B0%E5%A2%83) , [arthur-chang](https://hackmd.io/@arthur-chang/linux2022-lab0#%E7%A0%94%E8%AE%80-liblist_sortc) 等同學的筆記
:::spoiler 兩段重要註解
> This mergesort is as eager as possible while always performing at least 2:1 balanced merges. Given two pending sublists of size 2^k, they are merged to a size-2^(k+1) list as soon as we have 2^k following elements.
Thus, it will avoid cache thrashing as long as 3*2^k elements can fit into the cache. Not quite as good as a fully-eager bottom-up mergesort, but it does use 0.2*n fewer comparisons, so is faster in the common case that everything fits into L1.
The merging is controlled by "count", the number of elements in the pending lists. This is beautifully simple code, but rather subtle.
Each time we increment "count", we set one bit (bit k) and clear bits k-1 .. 0. Each time this happens (except the very first time for each bit, when count increments to 2^k), we merge two lists of size 2^k into one list of size 2^(k+1).
This merge happens exactly when the count reaches an odd multiple of 2^k, which is when we have 2^k elements pending in smaller lists, so it's safe to merge away two lists of size 2^k.
After this happens twice, we have created two lists of size 2^(k+1), which will be merged into a list of size 2^(k+2) before we create a third list of size 2^(k+1), so there are never more than two pending.
The number of pending lists of size 2^k is determined by the state of bit k of "count" plus two extra pieces of information:
> * The state of bit k-1 (when k == 0, consider bit -1 always set), and
> * Whether the higher-order bits are zero or non-zero (i.e. is count >= 2^(k+1)).
There are six states we distinguish. "x" represents some arbitrary bits, and "y" represents some arbitrary non-zero bits:
> * 0: 00x: 0 pending of size 2^k; x pending of sizes < 2^k
> * 1: 01x: 0 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k
> * 2: x10x: 0 pending of size 2^k; 2^k + x pending of sizes < 2^k
> * 3: x11x: 1 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k
> * 4: y00x: 1 pending of size 2^k; 2^k + x pending of sizes < 2^k
> * 5: y01x: 2 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k
> (merge and loop back to state 2)
We gain lists of size 2^k in the 2->3 and 4->5 transitions (because bit k-1 is set while the more significant bits are non-zero) and merge them away in the 5->2 transition. Note in particular that just before the 5->2 transition, all lower-order bits are 11 (state 3), so there is one list of each smaller size.
When we reach the end of the input, we merge all the pending lists, from smallest to largest. If you work through cases 2 to 5 above, you can see that the number of elements we merge with a list of size 2^k varies from 2^(k-1) (cases 3 and 5 when x == 0) to 2^(k+1) - 1 (second merge of case 5 when x == 2^(k-1) - 1).
> Data structure invariants:
> - All lists are singly linked and null-terminated; prev pointers are not maintained.
> - pending is a prev-linked "list of lists" of sorted sublists awaiting further merging.
> - Each of the sorted sublists is power-of-two in size.
> - Sublists are sorted by size and age, smallest & newest at front.
> - There are zero to two sublists of each size.
> - A pair of pending sublists are merged as soon as the number of following pending elements equals their size (i.e. each time count reaches an odd multiple of that size). That ensures each later final merge will be at worst 2:1.
> - Each round consists of:
> - Merging the two sublists selected by the highest bit which flips when count is incremented, and Adding an element from the input as a size-1 sublist.
:::
我觀察到三個重點
* 藉由對 `count` 的 bitwise 操作(6 個狀態,每當 `pending` 的數量符合預期,就進行合併),達到接近(但不大於)2:1 的合併,註解寫到可以減少 0.2n 次比較,雖然還是不如 `fully-eager bottom-up mergesort`
> 有點類似 `state machine` ,搭配 [kdnvt](https://hackmd.io/@5ux520T8Sd-OoYfdxZR55Q/SyzDKJ9y9#%E7%A0%94%E8%AE%80-liblist_sortc)同學的證明(雖然沒有看懂),發現是很縝密的數學
* 每個 `sublist` 的長度都是 2 的次方,使得同時間放在 cache 中的資料長度為 $3*2^k$ 可以通通放進 cache (註解寫到可以防止 `cache thrashing`),同時也用來判斷該不該進行合併(配合第一點的 `count`)
> 我認知的 `cache thrashing` 是要重複替換在 `cache line` 中的資料,不太了解跟 $2^k$ 的關係
* 在合併過程中不維護 `prev pointer` 也不組成 `cycle`,最後再處理即可 => 可以減少指令數
### 引入到 lab0-c 專案
將 `list_sort.c` 與 `list_sort.h` 移植到專案中,
並參考 [SmallHanley](https://hackmd.io/@SmallHanley/linux2022-lab0#%E5%BC%95%E5%85%A5-liblist_sortc) 同學對於 `likely` 以及 `unlikely` 的處理方式,新增兩個巨集
```c
# define likely(x) __builtin_expect(!!(x), 1)
# define unlikely(x) __builtin_expect(!!(x), 0)
```
然後移除所有的 `__attribute__((nonnull(x, y)))` (參數檢查)
以及改寫 `list_cmp_func_t` ,將第一個參數 `void *priv` (private data) 移除
最後在 `qtest.c` 中新增命令 `lsort` 與函式 `do_lsort` 並使用移植過來的 `list_sort` 來排序
```c
int cmp(struct list_head *a, struct list_head *b)
{
return strcmp(list_entry(a, element_t, list)->value, list_entry(b, element_t, list)->value);
}
bool do_lsort(int argc, char *argv[])
{
if (argc != 1) {
report(1, "%s takes no arguments", argv[0]);
return false;
}
if (!l_meta.l)
report(3, "Warning: Calling sort on null queue");
error_check();
int cnt = q_size(l_meta.l);
if (cnt < 2)
report(3, "Warning: Calling sort on single node");
error_check();
list_cmp_func_t lcmp = (list_cmp_func_t)&cmp;
set_noallocate_mode(true);
if (exception_setup(true))
list_sort(l_meta.l, lcmp);
exception_cancel();
set_noallocate_mode(false);
bool ok = true;
if (l_meta.size) {
for (struct list_head *cur_l = l_meta.l->next;
cur_l != l_meta.l && --cnt; cur_l = cur_l->next) {
/* Ensure each element in ascending order */
/* FIXME: add an option to specify sorting order */
element_t *item, *next_item;
item = list_entry(cur_l, element_t, list);
next_item = list_entry(cur_l->next, element_t, list);
if (strcasecmp(item->value, next_item->value) > 0) {
report(1, "ERROR: Not sorted in ascending order");
ok = false;
break;
}
}
}
show_queue(3);
return ok && !error_check();
}
```
### 效能比較
設計 `trace-sort.cmd` 與 `trace-lsort.cmd` 來進行測試
```shell
# trace-sort
option fail 0
option malloc 0
new
ih dolphin 500000
sort #lsort for trace-lsort
ih RAND 100000
sort #lsort for trace-lsort
```
使用 `pref` 來進行效能紀錄
命令: `perf stat --repeat 10 -e branches,branch-misses,cache-references,cache-misses,instructions,cycles ./qtest -f <trace file>`
結果
* 我的 merge_sort
```perf
Performance counter stats for './qtest -f trace-sort.cmd' (10 runs):
257,018,128 branches ( +- 1.13% ) (82.96%)
1,707,051 branch-misses # 0.66% of all branches ( +- 0.77% ) (83.16%)
110,697,814 cache-references ( +- 0.75% ) (83.33%)
6,790,606 cache-misses # 6.134 % of all cache refs ( +- 1.25% ) (83.49%)
1,196,117,018 instructions # 0.71 insn per cycle ( +- 1.01% ) (83.65%)
1,687,262,338 cycles ( +- 0.79% ) (83.41%)
0.47257 +- 0.00573 seconds time elapsed ( +- 1.21% )
```
* Linux 的 list_sort
```perf
Performance counter stats for './qtest -f trace-lsort.cmd' (10 runs):
329,315,504 branches ( +- 0.94% ) (83.12%)
3,532,435 branch-misses # 1.07% of all branches ( +- 0.83% ) (83.22%)
86,018,106 cache-references ( +- 0.41% ) (83.26%)
5,567,120 cache-misses # 6.472 % of all cache refs ( +- 0.95% ) (83.42%)
1,479,511,938 instructions # 0.93 insn per cycle ( +- 0.70% ) (83.67%)
1,584,030,393 cycles ( +- 0.51% ) (83.30%)
0.44128 +- 0.00383 seconds time elapsed ( +- 0.87% )
```
分別跑 10000, 50000, 100000, 500000筆隨機測資和 500000筆相同測資(跑10次取平均)
:::spoiler 詳細結果
10000
```p
Performance counter stats for './qtest -f trace-sort.cmd' (10 runs):
5,593,870 branches ( +- 6.51% ) (59.94%)
106,362 branch-misses # 1.90% of all branches ( +- 6.39% ) (67.67%)
1,062,361 cache-references ( +- 2.43% ) (89.23%)
194,112 cache-misses # 18.272 % of all cache refs ( +- 2.36% )
28,035,409 instructions # 1.19 insn per cycle ( +- 0.04% )
23,598,141 cycles ( +- 3.36% ) (83.16%)
0.010288 +- 0.000675 seconds time elapsed ( +- 6.56% )
```
```p
Performance counter stats for './qtest -f trace-lsort.cmd' (10 runs):
6,012,970 branches ( +- 4.98% ) (50.65%)
159,851 branch-misses # 2.66% of all branches ( +- 6.77% ) (75.37%)
963,757 cache-references ( +- 3.29% ) (93.25%)
194,570 cache-misses # 20.189 % of all cache refs ( +- 1.41% )
27,118,254 instructions # 1.25 insn per cycle ( +- 0.06% )
21,760,239 cycles ( +- 2.80% ) (80.73%)
0.008412 +- 0.000679 seconds time elapsed ( +- 8.08% )
```
50000
```p
Performance counter stats for './qtest -f trace-sort.cmd' (10 runs):
27,880,195 branches ( +- 1.86% ) (81.27%)
555,234 branch-misses # 1.99% of all branches ( +- 1.52% ) (82.45%)
5,845,745 cache-references ( +- 3.12% ) (83.06%)
1,223,135 cache-misses # 20.924 % of all cache refs ( +- 2.41% ) (85.06%)
149,999,368 instructions # 0.68 insn per cycle ( +- 0.93% ) (85.85%)
220,961,824 cycles ( +- 1.35% ) (82.30%)
0.07108 +- 0.00242 seconds time elapsed ( +- 3.41% )
```
```p
Performance counter stats for './qtest -f trace-lsort.cmd' (10 runs):
28,749,713 branches ( +- 1.24% ) (80.54%)
902,886 branch-misses # 3.14% of all branches ( +- 1.50% ) (80.61%)
4,966,511 cache-references ( +- 2.34% ) (82.85%)
1,326,930 cache-misses # 26.718 % of all cache refs ( +- 0.76% ) (86.24%)
142,718,022 instructions # 0.70 insn per cycle ( +- 0.83% ) (86.42%)
204,829,798 cycles ( +- 1.05% ) (83.35%)
0.06218 +- 0.00133 seconds time elapsed ( +- 2.14% )
```
100000
```p
Performance counter stats for './qtest -f trace-sort.cmd' (10 runs):
58,451,551 branches ( +- 1.24% ) (82.64%)
1,023,503 branch-misses # 1.75% of all branches ( +- 1.95% ) (83.34%)
13,488,726 cache-references ( +- 0.97% ) (83.35%)
2,710,467 cache-misses # 20.094 % of all cache refs ( +- 0.95% ) (83.57%)
287,066,488 instructions # 0.53 insn per cycle ( +- 1.35% ) (83.94%)
537,631,546 cycles ( +- 0.74% ) (83.16%)
0.15654 +- 0.00248 seconds time elapsed ( +- 1.59% )
```
```p
Performance counter stats for './qtest -f trace-lsort.cmd' (10 runs):
59,243,074 branches ( +- 0.55% ) (82.27%)
1,698,227 branch-misses # 2.87% of all branches ( +- 0.96% ) (82.46%)
11,503,090 cache-references ( +- 0.94% ) (82.73%)
2,972,868 cache-misses # 25.844 % of all cache refs ( +- 0.52% ) (83.95%)
274,866,960 instructions # 0.57 insn per cycle ( +- 0.51% ) (84.76%)
485,683,347 cycles ( +- 0.65% ) (83.83%)
0.14038 +- 0.00246 seconds time elapsed ( +- 1.75% )
```
500000
```p
Performance counter stats for './qtest -f trace-sort.cmd' (10 runs):
303,464,710 branches ( +- 0.20% ) (83.14%)
5,738,668 branch-misses # 1.89% of all branches ( +- 0.44% ) (83.23%)
79,618,128 cache-references ( +- 0.88% ) (83.36%)
17,593,359 cache-misses # 22.097 % of all cache refs ( +- 0.39% ) (83.45%)
1,470,930,563 instructions # 0.42 insn per cycle ( +- 0.24% ) (83.49%)
3,474,129,943 cycles ( +- 0.33% ) (83.32%)
0.95146 +- 0.00266 seconds time elapsed ( +- 0.28% )
```
```p
Performance counter stats for './qtest -f trace-lsort.cmd' (10 runs):
310,717,746 branches ( +- 0.40% ) (83.09%)
9,569,091 branch-misses # 3.08% of all branches ( +- 0.25% ) (83.30%)
64,293,293 cache-references ( +- 0.25% ) (83.35%)
18,789,900 cache-misses # 29.225 % of all cache refs ( +- 0.14% ) (83.41%)
1,416,507,591 instructions # 0.48 insn per cycle ( +- 0.37% ) (83.49%)
2,951,098,672 cycles ( +- 0.26% ) (83.36%)
0.80188 +- 0.00252 seconds time elapsed ( +- 0.31% )
```
500000 same
```p
Performance counter stats for './qtest -f trace-sort.cmd' (10 runs):
159,219,808 branches ( +- 0.88% ) (82.70%)
385,539 branch-misses # 0.24% of all branches ( +- 1.32% ) (83.21%)
50,093,662 cache-references ( +- 0.97% ) (83.36%)
1,931,028 cache-misses # 3.855 % of all cache refs ( +- 1.09% ) (83.49%)
751,876,531 instructions # 1.25 insn per cycle ( +- 0.43% ) (84.04%)
601,405,011 cycles ( +- 0.82% ) (83.21%)
0.17093 +- 0.00219 seconds time elapsed ( +- 1.28% )
```
```p
Performance counter stats for './qtest -f trace-lsort.cmd' (10 runs):
194,017,598 branches ( +- 0.40% ) (82.56%)
890,984 branch-misses # 0.46% of all branches ( +- 1.31% ) (82.70%)
41,181,898 cache-references ( +- 0.46% ) (83.37%)
1,450,604 cache-misses # 3.522 % of all cache refs ( +- 0.85% ) (83.66%)
903,242,190 instructions # 1.37 insn per cycle ( +- 1.14% ) (84.31%)
658,638,789 cycles ( +- 0.49% ) (83.40%)
0.18613 +- 0.00240 seconds time elapsed ( +- 1.29% )
```
:::
| sort\資料數 | 10000 | 50000 | 100000 | 500000 | 500000(same) |
| -------- | -------- | -------- | -------- | -------- | -------- |
| 我的 | 0.010288s | 0.07108s | 0.15654s | 0.95146s | 0.17093s |
| Linux的 | 0.008412s | 0.06218s | 0.14038s | 0.80188s | 0.18613s |
| 比值 | 1.22301 | 1.14313 | 1.11512 | 1.18654 | 0.91834 |
可以發現,除了測資都相同的情形,其餘的 Linux sort 的效能皆是我的 1.1~1.2 倍
> 我的版本對已排序的測資有特別判斷以及簡化處理
仔細觀察,發現我的版本都擁有比較少的 `branch` 數以及 `branch-miss` 率
> 我認為是歸功於 `pointer to pointer` 的使用,每輪減少了一次的 `branch`
也有較多的 `cache-reference` 以及較少的 `cache-miss` 率
在 `cache` 的使用上是比較優異的
但時間上依舊輸給 Linux 的版本
發現 `instruction` 數跟 `cycle` 數皆比較高,也就是執行了較多的指令,因而花費更多時間
> 程式流程太複雜,可以考慮合併途中不進行 `circular doubly-linked list` 的維護
> TODO: 測試**比較**次數,畢竟 merge-sort 的效率很大部份取決於進行比較的次數(演算法設計)
## 開發過程 - qtest.c
### 提供新的命令 shuffle
參考 [Fisher-Yates Shuffle](https://gaohaoyang.github.io/2016/10/16/shuffle-algorithm/) 撰寫一個 $O(n^2)$ 的 shuffle 實作
> 曾考慮先把每個節點用 table 紀錄,用查找的方式降低複雜度
> 不過更新 table 會比較麻煩,就放棄了
```c
static bool do_shuffle(int argc, char *argv[])
{
if (argc != 1) {
report(1, "%s takes no arguments", argv[0]);
return false;
}
if (!l_meta.l)
report(3, "Warning: Try to access null queue");
error_check();
/* Fisher-Yates Shuffle */
srand(time(NULL));
size_t size = l_meta.size;
// size >= 0
for (; size; --size) {
/*
* random range: [0, size-1]
* => rand() % ((size-1) - 0 + 1) + 0
*/
size_t r = (size_t) rand() % size;
struct list_head *p = l_meta.l->next;
for (; r; --r, p = p->next)
; // clang-format style ><
// remove and add to tail
list_move_tail(p, l_meta.l);
}
show_queue(3);
return !error_check();
}
```
在 `console_init` 中加入
```c
ADD_COMMAND(shuffle, " | Shuffle the queue");
```
成為新的命令