# Movidius Neural Compute Stick tutorial <br /> Intel 神經運算棒-基礎教學 contributed by <`yanjiun`> ###### tags: `MvNCS` --- ## 硬體介紹 官方網站:[Intel® Movidius™ Neural Compute Stick](https://software.intel.com/en-us/movidius-ncs) ![MvNCS](https://software.intel.com/sites/default/files/managed/e8/20/NCS-banner-MovStick-500w-300h.png) ### 結論 ==Accelerate Deep Learning Development At The Edge== ==Develop for High-Performance, Low-Power Devices== Movidius NCS(Neural Compute Stick) 是 Intel 開發來使低性能的設備也能進行[神經網路](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C)運算,例如:Rasperry Pi ,FPGA 等嵌入式開發平台,他可以提供低功耗且有一定運算能力。 * 運算能力:CPU < NCS < GPU * 功耗:NCS < CPU < GPU ### 硬體架構 ![Architecture](https://movidius.github.io/ncsdk/images/NCS1_ArchDiagram.jpg) NCS 是從 Intel® Movidius™ Myriad™ 2 vision processing unit ( VPU )所衍伸出來的一個產品。 VPU 是影像辨識專用處理器,與 GPU 有本質上的差別。 這裡不對 VPU 特性多做介紹,有興趣可以參考 [Intel® Movidius™ Myriad™ 2](https://www.movidius.com/myriad2)。 這顆 VPU 內建 4GB LPDDR3 快取記憶體、12個可程式化向量處理器( SHAVE )、以及 Leon 微處理器( SoC ),並採用 USB3 協定做通訊。 而應用端將透過提供的開發工具( NCAPI )與 VPU SoC溝通。 --- ## 軟體開發介紹 ### Software Development Kit ( NCSDK ) <br/> Intel 神經棒開發工具 官方說明文件:[Intel® Movidius™ Neural Compute SDK](https://movidius.github.io/ncsdk/) ![tool](https://image.cavedu.com/media/2018/02/a01.png) NCSDK 是 Intel 提供給 MvNCS 的開發工具,用於快速部署神經網路在嵌入式平台。 NCSDK 包含三個硬體開發工具,以及一個給軟體開發 API( for C/C++ or Python )。 * Toolkit ==僅提供 Tensorflow or Caffe 框架編譯== * Compile : 將Caffe / TensorFlow 網絡和相關權重轉換為內部Intel®Movidius™編譯格式,以與Intel®Movidius™神經計算API一起使用。 * Profile : 提供逐層統計信息,以評估神經計算設備上Caffe / TensorFlow網絡的性能。 * Check : 比較在神經計算設備上運行網絡的推斷結果與用於網絡編譯驗證的Caffe / TensorFlow。 * API Framework ==僅提供 C/C++ or Python 語言開發== * API : 神經計算API(NCAPI)提供了一個開發介面,用於載入網絡圖並在神經計算設備上運算。 你可以選擇 Full-SDK 或者 API-Only。前者會包含 Toolkit 開發工具,通常用於網路的開發與測試,後者用於載入開發完成的網路到裝置上運算。 ==通常實際應用的嵌入是平台僅會安裝 API-Only==,但即便未安裝toolkit,API-only模式也讓您可以在Pi上開發各種app。API-only模式的限制在於無法剖析、檢查/驗證與編譯以及將神經網路編譯為二元graph檔。例如mvNCProfile、mvNCCheck與 mvNCCompile 都沒有安裝。 ### 開發流程 ![開發流程圖](https://movidius.github.io/ncsdk/images/ncs_workflow.jpg) * ==Note:注意,訓練神經網路不要用NCSDK== 1. Training ( Tensorflow or Caffe ) * 首先在擁有足夠運算能力的電腦進行神經網路的開發。 * 或者取得他人已經訓練完的神經網路資料 2. Profile, Tuning, Compile ( SDK Tools ) * 使用 Toolkit 進行分析、調整、編譯,最後編譯輸出 MvNCS可讀取的運算圖( Graph )。 * 這裡會需要上一步所得的訓練好的資料。 3. Prototyping ( SDK API for C/C++ or Python) * 在最後要部署的平台上,使用 API 將上一步所調整好的神經網路運算圖載入 MvNCS 裝置上完成網路部署。 * 這裡要使用 API 撰寫程式將輸入資料以運算圖載入 MvNCS 裝置上運算,並且取得回傳值做相對應的操作。 --- ## 開發環境要求 - [ ] Ubuntu* 16.04 作業系統、RPI3 Model B(樹莓派3)、或 Ubuntu 虛擬機擇一。 - [ ] [Git](https://git-scm.com/) - [ ] Intel® Movidius™ Neural Compute Stick 硬體。 - [ ] Intel® Movidius™ Software Development Kit (SDK) Intel神經棒開發工具。 --- ## 開始安裝 MvNCS 開發工具 官方已經將完整開發工具放在 Github 開源出來。 ``` $ git clone -b ncsdk2 http://github.com/Movidius/ncsdk $ cd ncsdk $ make install <- Full-SDK $ make api <- API-Only ``` GNU Make 將會讀取 `/ncsdk` 下的 `Makefile` 檔案,並自動安裝所有需要的軟體。 如果要刪除則在目錄下輸入 `$ make uninstall` 即可。 ==使用 `$ make help` 可以看到可用功能與解說== 有興趣可以閱讀 `Makefile` 檔案。可以參考[GNU Make教學](https://zh.wikibooks.org/zh-tw/GNU_make/%E9%99%84%E9%8C%84/%E4%B8%80%E5%80%8B%E8%A4%87%E9%9B%9C%E7%9A%84Makefile%E5%AF%A6%E4%BE%8B)。 ### 測試是否可以連接設備 ``` $ cd ncsdk/examples/apps/hello_ncs_py <- 這裡使用 python $ make help <- 觀看說明 $ make run <- 執行 hello_ncs.py ``` 其他 example 也都可以玩看看,只要進去目錄輸入 `$make help` 看功能。 如果可以正常存取裝置會輸出以下內容: ``` making run python3 hello_ncs.py; Hello NCS! Device opened normally. Goodbye NCS! Device closed normally. NCS device working. ``` ## MvNCS 開發工具 ==所有 Toolkit 使用 `-h` 參數,可以看到說明檔案== ### Toolkit Intel®Movidius™神經計算SDK提供了在開發計算機(主機系統)上分析,調整和編譯深度神經網絡(DNN)模型的工具。 * mvNCCompile mvNCCompile是一個命令行工具,可將Caffe或TensorFlow 模型的網絡和權重文件編譯為®Movidius™圖形文件格式,該格式與 ®Movidius™NCSDK 和 NCAPI 兼容。 ==`$ mvNCCompile -h`== example: tensorflow ``` mvNCCompile inception-v1.meta -s 12 -in=input -on=InceptionV1/Logits/Predictions/Reshape_1 -is 224 224 -o InceptionV1.graph ``` * mvNCCheck mvNCCheck是一個命令行工具,用於檢查神 經計算設備上 Caffe 或 TensorFlow 神經網絡的有效性。 通過使用提供的網絡和適當的框架庫在設備和主機上的軟件中運行推斷來完成檢查。比較兩個推論的結果以確定網絡是否通過或失敗。前5個推斷結果作為輸出提供。此工具最適用於圖像分類網絡。 [延伸閱讀教學](https://movidius.github.io/blog/mvNCCheck/) ==`$ mvNCCheck -h`== example: tensorflow ``` mvNCCheck inception_v1.meta -s 12 -in=input -on=InceptionV1/Logits/Predictions/Reshape_1 -is 224 224 -cs 0,1,2 ``` * mvNCProfile mvNCProfile是一個命令行工具,可編譯網絡以與 ®Movidius™NCSDK 配合使用,在連接的神經計算設備上運行網路,並輸出文本和HTML配置文件報告。 分析數據包含有關網路性能的逐層統計信息。這有助於確定每層花費多少時間來縮小網絡的潛在變化,從而縮短總推理時間。 ==`$ mvNCProfile -h`== example: tensorflow ``` mvNCProfile inception_v1.meta -s 12 -in input -on InceptionV1/Logits/Predictions/Reshape_1 -is 224 224 ``` 終端機會輸出以下資訊 (GoogLeNet範例) ``` Detailed Per Layer Profile Layer Name MFLOPs Bandwidth MB/s time(ms) ======================================================================================== 0 conv1/7x7_s2 236.028 2505.00 5.63 1 pool1/3x3_s2 1.806 1441.66 1.06 2 pool1/norm1 0.000 712.67 0.54 3 conv2/3x3_reduce 25.690 404.11 0.97 4 conv2/3x3 693.633 316.67 11.55 5 conv2/norm2 0.000 797.05 1.44 6 pool2/3x3_s2 1.355 1495.52 0.77 7 inception_3a/1x1 19.268 462.47 0.67 8 inception_3a/3x3_reduce 28.901 399.64 0.81 9 inception_3a/3x3 173.408 333.13 4.52 10 inception_3a/5x5_reduce 4.817 793.78 0.37 11 inception_3a/5x5 20.070 849.91 0.73 12 inception_3a/pool 1.355 686.68 0.42 13 inception_3a/pool_proj 9.634 558.60 0.54 14 inception_3b/1x1 51.380 470.46 0.95 15 inception_3b/3x3_reduce 51.380 472.93 0.94 16 inception_3b/3x3 346.817 268.78 7.99 17 inception_3b/5x5_reduce 12.845 1098.70 0.36 18 inception_3b/5x5 120.422 580.92 2.32 19 inception_3b/pool 1.806 695.31 0.55 20 inception_3b/pool_proj 25.690 683.06 0.61 21 pool3/3x3_s2 0.847 1305.34 0.55 22 inception_4a/1x1 36.127 374.89 0.95 23 inception_4a/3x3_reduce 18.063 574.14 0.47 24 inception_4a/3x3 70.447 320.50 2.09 25 inception_4a/5x5_reduce 3.011 1034.04 0.19 26 inception_4a/5x5 7.526 616.84 0.31 27 inception_4a/pool 0.847 630.87 0.28 28 inception_4a/pool_proj 12.042 661.36 0.36 29 inception_4b/1x1 32.113 294.21 1.18 30 inception_4b/3x3_reduce 22.479 377.09 0.80 31 inception_4b/3x3 88.510 313.94 2.58 32 inception_4b/5x5_reduce 4.817 838.52 0.26 33 inception_4b/5x5 15.053 384.82 0.78 34 inception_4b/pool 0.903 612.12 0.31 35 inception_4b/pool_proj 12.845 552.44 0.46 36 inception_4c/1x1 25.690 486.52 0.65 37 inception_4c/3x3_reduce 25.690 488.53 0.65 38 inception_4c/3x3 115.606 308.59 3.23 39 inception_4c/5x5_reduce 4.817 835.81 0.26 40 inception_4c/5x5 15.053 387.14 0.78 41 inception_4c/pool 0.903 614.42 0.31 42 inception_4c/pool_proj 12.845 550.52 0.46 43 inception_4d/1x1 22.479 393.44 0.77 44 inception_4d/3x3_reduce 28.901 388.96 0.85 45 inception_4d/3x3 146.313 428.44 2.80 46 inception_4d/5x5_reduce 6.423 725.47 0.31 47 inception_4d/5x5 20.070 474.31 0.84 48 inception_4d/pool 0.903 657.23 0.29 49 inception_4d/pool_proj 12.845 583.48 0.44 50 inception_4e/1x1 52.986 309.60 1.47 51 inception_4e/3x3_reduce 33.116 279.09 1.28 52 inception_4e/3x3 180.634 307.91 4.62 53 inception_4e/5x5_reduce 6.623 594.87 0.39 54 inception_4e/5x5 40.141 416.06 1.20 55 inception_4e/pool 0.931 636.86 0.31 56 inception_4e/pool_proj 26.493 477.56 0.68 57 pool4/3x3_s2 0.367 1303.53 0.24 58 inception_5a/1x1 20.873 631.79 0.77 59 inception_5a/3x3_reduce 13.046 657.84 0.50 60 inception_5a/3x3 45.158 615.42 1.66 61 inception_5a/5x5_reduce 2.609 468.53 0.27 62 inception_5a/5x5 10.035 554.62 0.50 63 inception_5a/pool 0.367 540.50 0.14 64 inception_5a/pool_proj 10.437 593.71 0.47 65 inception_5b/1x1 31.310 667.18 1.03 66 inception_5b/3x3_reduce 15.655 688.70 0.56 67 inception_5b/3x3 65.028 799.92 1.79 68 inception_5b/5x5_reduce 3.914 459.85 0.33 69 inception_5b/5x5 15.053 563.79 0.73 70 inception_5b/pool 0.367 533.47 0.15 71 inception_5b/pool_proj 10.437 592.62 0.47 72 pool5/7x7_s1 0.100 481.97 0.20 73 loss3/classifier 0.002 2519.16 0.78 74 prob 0.003 10.62 0.18 ---------------------------------------------------------------------------------------- Total inference time 88.66 ---------------------------------------------------------------------------------------- ``` 並且輸出一個網頁如下 ![web](https://movidius.github.io/ncsdk/images/GoogLeNet_gv.png) ### API 使用 ®Movidius™NCSDK 進行推理的應用程序可以用 C / C ++ 或 Python 開發。NCAPI提供了一個程式介面,用於加載網絡圖並在神經計算設備上運行推理。 [Python API 文件](https://movidius.github.io/ncsdk/ncapi/ncapi2/py_api/readme.html) [C / C++ API 文件](https://movidius.github.io/ncsdk/ncapi/ncapi2/c_api/readme.html) --- ## 手把手教學 [Neural Compute App Zoo](https://github.com/movidius/ncappzoo/) 這裡是官方收錄的應用。裡面有許多流行的神經網路,已經包裝好==Makefile==可以輕鬆使用。 我們可以挑選我們想要的網路來快速部署到你的環境。 ==使用前記得看說明檔,有些應用有多個神經網路,需要多支 NCS 做平行運算。== ``` $ git clone https://github.com/movidius/ncappzoo.git $ cd ncappzoo/ $ ls ``` 底下有幾個目錄: * apps:這裡有關方收錄的許多使用 NCS 實作的應用。 * caffe:這裡收錄使用 caffe 實作的神經網路,可將其編譯成 NCS 可讀取的格式。 * tensorflow:這裡收錄使用 tensorflow 實作的神經網路,可將其編譯成 NCS 可讀取的格式。 * data:除存測試神經網路的輸入測試資料。 詳細操作流程可以透過閱讀目錄裡的 ==`Makefile`== 。 在此大該說明開發流程: 1. 下載已完成之神經網路圖、以及訓練完成之權重資料。 2. 使用 mvNCCompile 將網路圖與權重資料編譯為 MvNCS 專用格式 `graph`。 3. 撰寫 python or c/c++ 呼叫 API Tool 將 graph 檔案上傳到 NCS 裝置。 4. 使用 API 做相對應得資料預先處理,並上傳到 NCS 運算,在接受 NCS 回傳值最相對應處理。