## 1. (15 points) The linear combination of vectors $v^T=[1,2,0]$ and $w^T=[0,0,1]$ fill a $plane$ in $R^3$. 1. Describe that plane with in matrix form. 1. Find one vector **NOT** that plane. 1. Find a vector perpendicular to that plane. ## 2. (10 points) I. A vector $v = (1,1,\dots,1)$ in 9-dimensions, please find a unit vector $\hat{v}$ in the same direction as $v$. II. Find another unit vector $\hat{w}$ that is perpendicular to $v$. ## 3. (40 points) A system of linear equation as: $$ \begin{aligned} x_1 + x_2 + x_3 &= 7 \\ x_1 + x_2 - x_3 &= 5 \\ x_1 - x_2 + x_3 &= 3 \end{aligned} $$ 1. Use elimination to make $PA \rightarrow U$ and back substitution to solve $x$. 1. Factorize $PA = LU$. 1. Compare the multiplier of each elimination step and lower triangle matrix $L$. 1. Using Gauss-Jordan to find $A^{-1}$ and make $x = A^{-1}b$. ## 4. (20 points) If a $3\times3$ matrix $A$ conducts this operation: `row1 + row2 = row3`, * Is $A$ singular or invertible? * Find a nonzero solution of $Ax = [0,0,0]^T$. ## 5. (15 points) * The row vector $x^T$ times $A$ times the column $y$ produces what number? $$ x^T A y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} $$ - This is the row $x^T A = \_\_\_\_\_\_\_\_\_\_$ times the column $y$. - This is the row $x^T = [0,1]$ times the column $Ay = \_\_\_\_\_\_\_\_\_\_$.