--- title: Ch6-7 tags: Linear algebra GA: G-77TT93X4N1 --- # Chapter 6 extra note 7 > polar decomposition **Example:** Given $A\in\mathbb{M}_{3\times 3}(\mathbb{R})$ as $$ \tag{1} A = \begin{bmatrix} 0 & \sqrt{3} & 0\\ 0 & 0 & \sqrt{15} \\ 0 & 0 & 0 \end{bmatrix}, $$ we want to calculate the polar decomposition of $A$, namely, to find an unitary matrix $U$ such that $A=U|A|$. At first, let us find $|A|$. We calculate $A^*A$ and determine $|A|$. We have $$ \tag{2} A^*A = \begin{bmatrix} 0 & 0 & 0\\ 0 & 3 & 0 \\ 0 & 0 & 15 \end{bmatrix}, \quad |A| = \begin{bmatrix} 0 & 0 & 0\\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{15} \end{bmatrix}. $$ It should be clear that the eigenvector of $A^*A$ and $|A|$ are ${\bf v}_1 = [0, 0, 1]^T$, ${\bf v}_2=[0, 1, 0]^T$. Next, we require $A{\bf v}_i=U|A|{\bf v}_i$ for $i=1, 2$. * $i=1$: $$ \tag{3} A \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}= \begin{bmatrix} 0 & \sqrt{3} & 0\\ 0 & 0 & \sqrt{15} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = U\begin{bmatrix} 0 & 0 & 0\\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{15} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, $$ that gives the equation $$ \tag{4} \begin{bmatrix} \sqrt{3} \\ 0 \\ 0 \end{bmatrix} = U\begin{bmatrix} 0\\ \sqrt{3} \\ 0 \end{bmatrix}. $$ * $i=2$ $$ \tag{5} A \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}= \begin{bmatrix} 0 & \sqrt{3} & 0\\ 0 & 0 & \sqrt{15} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = U\begin{bmatrix} 0 & 0 & 0\\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{15} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, $$ that gives the equation $$ \tag{6} \begin{bmatrix} 0 \\ \sqrt{15} \\ 0 \end{bmatrix} = U\begin{bmatrix} 0\\ 0\\ \sqrt{15} \end{bmatrix}. $$ Combining equations (4) and (6) we see that $U$ should be in the following form: $$ \tag{7} U=\begin{bmatrix} ? & 1 & 0\\ ? & 0 & 1 \\ ? & 0 & 0 \end{bmatrix}. $$ > One might feels that there exists the third equation by using ${\bf v}_0=[1,0,0]^T$, but, as ${\bf v}_0\in\text{Ker}(A)$, it has no contribution: > $$ > \tag{8} > A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}= \begin{bmatrix} 0 & \sqrt{3} & 0\\ 0 & 0 & \sqrt{15} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = U\begin{bmatrix} 0 & 0 & 0\\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{15} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}. > $$ > Then we get ${\bf 0}=U{\bf 0}$ which is always true. Finally, given that $U$ is unitary, we have two solutions for $U$ as $$ \tag{9} U_1 = \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \quad U_1 = \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}. $$ So the polar decomposition is not unique, we have $$ \tag{10} A = U_1|A| = U_2|A|. $$