--- title: Ch6-5 tags: Linear algebra GA: G-77TT93X4N1 --- # Chapter 6 extra note 5 > Schmidt decomposition > singular value decomposition > image of unit ball in a linear transformation ## Selected lecture notes Let $T\in\mathcal{L}(V, W)$, where $V$ and $W$ are inner product spaces we can define the following operators: * $T^*\in\mathcal{L}(W, V)$; * $T^*T\in\mathcal{L}(V)$; * $|T|=\sqrt{T^*T}\in\mathcal{L}(V)$; * $TT^*\in\mathcal{L}(W)$; * $|T^*|=\sqrt{TT^*}\in\mathcal{L}(W)$; * $T^\dagger\in\mathcal{L}(W, V)$. ### Reduced SVD Since $T^*T\ge 0$, we can find $\{{\bf v}_1, \cdots, {\bf v}_n\}\subset V$ and $\lambda_1\ge \cdots \ge\lambda_n\ge 0$ such that $$ \tag{1} T^*T{\bf v}_i = \lambda_i{\bf v}_i. $$ Define $r$ be such that $\lambda_r>0$ and $\lambda_{r+1}=0$, then the singular values of $T$ are $\{\sigma_i\}^r_{i=1}$ where $\sigma_i=\sqrt{\lambda_i}$. We then have $$ \tag{2} T^*T{\bf v}_i = \sigma^2_i{\bf v}_i. $$ Let us also define $$ \tag{3} {\bf w}_i = \frac{1}{\sigma_i}T({\bf v}_i). $$ The reduced singular value decomposition (reduced SVD) of $T$ is then given by $$ \tag{4} T{\bf v} = \sum^r_{i=1}\sigma_i\langle{\bf v}, {\bf v}_i\rangle{\bf w}_i. $$ **Remark:** $$ \tag{5} \begin{align} TT^*{\bf w}_i &= TT^*\left(\frac{1}{\sigma_i}T({\bf v}_i)\right) \\ &= \frac{1}{\sigma_i}T\left(T^*T{\bf v}_i\right) \\ &= \frac{1}{\sigma_i}T\left(\sigma^2_i{\bf v}_i\right) \\ &=\sigma_i T{\bf v}_i = \sigma^2_i{\bf w}_i. \end{align} $$ ### Reduced SVD 2 Since $TT^*\ge 0$, we can find $\{{\bf w}_1, \cdots, {\bf w}_m\}\subset W$ and $\lambda_1\ge \cdots \ge\lambda_m\ge 0$ such that $$ \tag{6} TT^*{\bf w}_i = \lambda_i{\bf w}_i. $$ Define $r$ be such that $\lambda_r>0$ and $\lambda_{r+1}=0$, then the singular values of $T$ are $\{\sigma_i\}^r_{i=1}$ where $\sigma_i=\sqrt{\lambda_i}$. We then have $$ \tag{7} TT^*{\bf w}_i = \sigma^2_i{\bf w}_i. $$ Let us also define $$ \tag{8} {\bf v}_i = \frac{1}{\sigma_i}T^*({\bf w}_i). $$ The reduced singular value decomposition (reduced SVD) of $T$ is then given by $$ T{\bf v} = \sum^r_{i=1}\sigma_i\langle{\bf v}, {\bf v}_i\rangle{\bf w}_i. $$ **Remark:** One can either solve the eigenvalue problem for $T^*T$ or $TT^*$ to obtain the singular values and SVD. --- ### The adjoint transformation $$ \tag{9} \begin{align} \langle {\bf v}, T^*{\bf w}\rangle &= \langle T{\bf v}, {\bf w}\rangle\\ &= \langle \sum^r_{i=1}\sigma_i\langle{\bf v}, {\bf v}_i\rangle{\bf w}_i, {\bf w}\rangle\\ &= \sum^r_{i=1}\sigma_i\langle{\bf v}, {\bf v}_i\rangle\langle{\bf w}_i, {\bf w}\rangle\\ &= \sum^r_{i=1}\sigma_i\langle{\bf w}_i, {\bf w}\rangle\langle{\bf v}, {\bf v}_i\rangle\\ &= \langle {\bf v}, \sum^r_{i=1}\sigma_i\overline{\langle{\bf w}_i, {\bf w}\rangle}{\bf v}_i\rangle\\ &= \langle {\bf v}, \sum^r_{i=1}\sigma_i\langle{\bf w}, {\bf w}_i\rangle{\bf v}_i\rangle. \end{align} $$ Therefore, the reduced SVD of $T^*$ is given by $$ \tag{10} T^*{\bf w} = \sum^r_{i=1}\sigma_i\langle{\bf w}, {\bf w}_i\rangle{\bf v}_i. $$ --- ### Pseudoinverse The pseudoinverse of $T$ is given by $$ \tag{11} T^\dagger{\bf w} = \sum^r_{i=1}\frac{1}{\sigma_i}\langle{\bf w}, {\bf w}_i\rangle{\bf v}_i. $$ --- ### Image of the unit ball Define an unit ball in $V$ as $$ \tag{12} B_1 = \{{\bf v}\in V, \quad \|{\bf v}\|\le 1.\} $$ Given ${\bf v}\in B_1$, we have $$ \tag{13} {\bf v} = \sum^n_{i=1}\langle{\bf v}, {\bf v}_i\rangle{\bf v}_i, \quad \|{\bf v}\| = \sum^n_{i=1}\langle{\bf v}, {\bf v}_i\rangle^2\le 1. $$ Based on SVD, we know that $$ T{\bf v} = \sum^r_{i=1}\sigma_i\langle{\bf v}, {\bf v}_i\rangle{\bf w}_i\in W. $$ Let us denote the coordinate of $T{\bf v}$ in the basis $\{{\bf w}_1, \cdots, {\bf w}_m\}$ as $(y_1, \cdots, y_m)$, then we have $$ \tag{14} y_i = \begin{cases} \sigma_i\langle{\bf v}, {\bf v}_i\rangle, & 1\le i\le r \\ {\bf 0}, & r<i\le m. \end{cases} $$ Therefore $$ \tag{15} \frac{y^2_1}{\sigma^2_1} + \cdots + \frac{y^2_r}{\sigma^2_r} = \sum^r_{i=1}\langle{\bf v}, {\bf v}_i\rangle^2\le 1, $$ that is, $T{\bf v}$ lies inside the ellipse $$ \tag{16} E_1 = \left\{{\bf w}=(y_1, \cdots, y_m)\in W, \quad \frac{y_1}{\sigma^2_1} + \cdots + \frac{y_r}{\sigma^2_r}\le 1.\right\} $$