--- title: Ch6-2 tags: Linear algebra GA: G-77TT93X4N1 --- # Chapter 6 extra note 2 > positive definite/semidefinite operators > square root of an operator > positive square root of an operator > modulus of a linear transformation ## Youtube * [3Blue1Brown - Linear transformation and matrices](https://youtu.be/kYB8IZa5AuE) * [3Blue1Brown - Three-dimensional linear transformation](https://youtu.be/rHLEWRxRGiM) ## Selected lecture notes :::info **Definition:** A self-adjoint operator $T\in\mathcal{L}(V)$ is called *positive definite*, or $T>0$, if $$ \tag{1} \langle T({\bf v}), {\bf v}\rangle >0, \quad \forall {\bf v}\in V\setminus\{{\bf 0}\}, $$ and is called *positive semidefinite*, or $T\ge 0$, if $$ \tag{2} \langle T({\bf v}), {\bf v}\rangle \ge 0, \quad \forall {\bf v}\in V. $$ ::: **Theorem:** Let $V$ be an inner product space and $T\in\mathcal{L}(V)$ be a self-adjoint operator. $T>0$ if and only if all the engenvalues are positive, and $T\ge 0$ if and only if all the engenvalues are non-negative. * Proof: > We prove for the case $T>0$. The case of $T\ge 0$ can be shown similarly. > > ($\Rightarrow$) > Suppose $T=T^*$ and $T>0$. Let ${\bf v}\ne 0$ be such that $T({\bf v})=\lambda {\bf v}$. Then > $$ > \tag{3} > 0 < \langle T({\bf v}), {\bf v}\rangle = \langle \lambda{\bf v}, {\bf v}\rangle = \lambda \|{\bf v}\|^2. > $$ > Since ${\bf v}\ne 0$, we have $\|{\bf v}\|^2>0$ and hence $\lambda>0$. > Therefore, all the eigenvalues are positive. > > ($\Leftarrow$) > Since $T$ is self-adjoint, there exists an orthonormal basis of eigenvectors, i.e., we can find a basis $\{{\bf v}_1, \cdots, {\bf v}_n\}\subset V$ such that, for $1\le i\le n$, > 1. $T({\bf v}_i)=\lambda_i{\bf v}_i$; > 2. $\langle {\bf v}_i, {\bf v}_j\rangle = \delta_{ij}$; > 3. $\lambda_i\in\mathbb{R}$. > > Given ${\bf v}\in V\setminus\{{\bf 0}\}$, it can then be represented as ${\bf v} = \sum_k c_k{\bf v}_k$ and $T({\bf v}) = \sum_k c_k\lambda_k{\bf v}_k$. > > So we have > $$ > \tag{4} > \langle T({\bf v}), {\bf v}\rangle = \langle \sum_k c_k\lambda_k{\bf v}_k, \sum_k c_k{\bf v}_k\rangle = \sum_k c^2_k\lambda_k. > $$ > Since $\lambda_k>0$ for all $k$, and ${\bf v}\ne {\bf 0}$, we have $\langle T({\bf v}), {\bf v}\rangle>0$. > --- :::info **Definition:** An operator $B$ is called a *square root* of an operator $T$ if $B^2=T$. ::: :::info **Definition:** Let $T\ge 0$, a self-adjoint operator $B=\sqrt{T}$ if $B^2=T$ and $B\ge 0$. ::: **Theorem:** Let $V$ be an inner product space and $T\in\mathcal{L}(V)$ be a positive semidefinite operator. There exists an unique $B\in\mathcal{L}(V)$ that is positive semidefinite and $B^2 = T$, that is, $B$ is the *positive square root* of $T$, and is denoted by $B = \sqrt{T}$ or $T^{1/2}$. * Proof: > (existence) > Since $T$ is positive semidefinite, there exists $\{{\bf v}_1, \cdots, {\bf v}_n\}\subset V$ such that, for $1\le i,j\le n$, > 1. $T({\bf v}_i)=\lambda_i{\bf v}_i$; > 2. $\langle {\bf v}_i, {\bf v}_j\rangle = \delta_{ij}$; > 3. $\lambda_i\ge 0$. > > Let us define $B:V\to V$ be such that $B({\bf v}_i)=\sqrt{\lambda_i}{\bf v}_i$. Also, given ${\bf v}\in V$, ${\bf v} = \sum_k c_k{\bf v}_k$, we define > $$ > \tag{5} > B({\bf v}) = \sum_k c_k\sqrt{\lambda_k}{\bf v}_k. > $$ > It is easy to check that $B\in\mathcal{L}(V)$, $B=B^*$, and $B\ge 0$. > Finally, > $$ > \tag{6} > B^2({\bf v})=B(B({\bf v})) = \sum_k c_k\lambda_k{\bf v}_k = T({\bf v}). > $$ > > (uniqueness) > Let $\tilde{B}$ be such that $\tilde{B}\in \mathcal{L}(V)$, $\tilde{B}=\tilde{B}^*$, $\tilde{B}\ge 0$ and $\tilde{B}^2=T$. > Based on the following lemma, we must have > $$ > \tag{7} > \tilde{B}{\bf v} = \sqrt{\lambda}{\bf v} = B{\bf v}, > $$ > for all eigenvector ${\bf v}$ and eigenvalue $\lambda$ of $T$. > Since there exists a basis of orthonormal eigenvectors of $T$, we must have $\tilde{B}=B$. **Lemma:** Let $V$ be an inner product space and $T\in\mathcal{L}(V)$ be a positive semidefinite operator. Suppose ${\bf v}\in V$ satisfies $T({\bf v})=\lambda{\bf v}$, $\lambda\ge 0$, then $B{\bf v}=\sqrt{\lambda}{\bf v}$, where $B=\sqrt{T}$. * Proof: > Suppose $B=\sqrt{T}$, so $B=B^*\ge 0$. There exists $\{{\bf u}_1, \cdots, {\bf u}_n\}\subset V$ such that, for $1\le i,j\le n$, > 1. $B({\bf u}_i)=\mu_i{\bf u}_i$; > 2. $\langle {\bf u}_i, {\bf u}_j\rangle = \delta_{ij}$; > 3. $\mu_i\ge 0$. > > Let ${\bf v}\in V\setminus\{{\bf 0}\}$ satisfies $T({\bf v})=\lambda{\bf v}$, $\lambda\ge 0$, then ${\bf v}=\sum_kc_k {\bf u}_k$ and $B{\bf v}=\sum_kc_k \mu_k{\bf u}_k$. > Since $B^2=T$, > $$ > \tag{8} > T({\bf v}) = B^2({\bf v}) = \sum_kc_k \mu^2_k{\bf u}_k, > $$ > also, > $$ > \tag{9} > T({\bf v}) = \lambda{\bf v} = \sum_kc_k \lambda {\bf u}_k. > $$ > From (8) and (9) we obtain > $$ > \tag{10} > \sum_k c_k (\mu^2_k - \lambda){\bf u}_k = {\bf 0}. > $$ > Since $\{\bf u_k\}$ is a basis, all the coefficients have to be zero. Therefore $c_k (\mu^2_k - \lambda)=0$ for all $k$. > Since ${\bf v}\ne {\bf 0}$, there exists an index $j$ such that $c_j\ne 0$, that gives $\mu^2_j=\lambda$. > Besides, for $k\ne j$, $\mu^2_k - \lambda\ne 0$, so $c_k=0$ for all $k\ne j$, that gives ${\bf v}={\bf u}_j$. > > Therefore, > $$ > \tag{11} > B({\bf v}) = B({\bf u}_j) = \mu_j ({\bf u}_j) = \sqrt{\lambda}{\bf v}. > $$ --- Given $T\in\mathcal{L}(V, W)$, where $V$ and $W$ are inner product spaces, its adjoint linear transformation $T^*:W\to V$ is uniquely determined. We also have 1. $T^*\in\mathcal{L}(W, V)$; 2. $(T^*)^*=T$. We can then define a linear transformation that is a composition of $T$ and $T^*$ as $T^*\circ T:V\to V$. We have 1. $T^*T\in \mathcal{L}(V, V)$; 2. $(T^*T)^*=T^*T$, i.e., $T^*T$ is self-adjoint; 3. $\langle T^*T{\bf v}, {\bf v}\rangle=\langle T{\bf v}, T{\bf v}\rangle = \|T{\bf v}\|^2\ge 0$, so $T^*T\ge 0$; 4. $\sqrt{T^*T}$ exists and is unique. :::info **Definition:** Let $T\in\mathcal{L}(V, W)$ where $V$ and $W$ are inner product spaces. The *modulus* of $T$, denoted by $|T|$, is defined as $|T|=\sqrt{T^*T}$. ::: > Note that $|T|=\sqrt{T^*T}$ is self-adjoint and $|T|\ge 0$. *Proposition:* Let $T\in\mathcal{L}(V, W)$ where $V$ and $W$ are inner product spaces, we have $$ \|T{\bf v}\| = \| |T|{\bf v}\|. $$ * Proof: > $$ > \tag{12} > \begin{align} > \| |T|{\bf v}\|^2 &= \langle|T|{\bf v}, |T|{\bf v}\rangle\\ > &=\langle|T|^2{\bf v}, {\bf v}\rangle\\ > &=\langle T^*T{\bf v}, {\bf v}\rangle\\ > &=\langle T{\bf v}, T{\bf v}\rangle\\ > &=\|T{\bf v}\|^2. > \end{align} > $$