--- title: Ch5-6 tags: Linear algebra GA: G-77TT93X4N1 --- # Chapter 5 extra note 6 ## Selected lecture notes > isometry transformation > polarization identity > unitary transformation > rigid motion ### Adjoint linear transformation #### Example Consider inner product spaces $V$ and $W$ defined as $$ \begin{align} &V=\mathbb{P}_1, \quad \langle f, g\rangle = \int^1_{-1}f(x)g(x)\,dx,\\ &W=\mathbb{R}^2, \quad \langle (x, y), (u, v)\rangle = 2xu + 3yv. \end{align} $$ Let $T:V\to W$ be a linear transformation defined by $$ \tag{1} T(p) = \left(\int^1_0 p(x)\,dx, \int^1_{-1} p(x)\,dx\right). $$ In the following we aim to determine the adjoint linear transformation $T^*$ of $T$. Based on the definition of adjoint transformation, we should have, for all $p(x)\in\mathbb{P}_1$ and $(u,v)\in\mathbb{R}^2$, $$ \tag{2} \langle T(p), (u, v)\rangle = \langle p, T^*((u, v))\rangle. $$ > The goal is to find $T^*:W\to V$. > Since $W$ have a natural basis $e_1=(1, 0)$ and $e_2=(0, 1)$, if we can determine $T^*(e_1)$ and $T^*(e_2)$, we should have > $$ > T^*((u, v)) = uT^*(e_1) + vT^*(e_2). > $$ $T^*(e_1)$ should satisfy $$ \tag{3} \langle T(p), e_1\rangle = \langle p, T^*(e_1)\rangle = \int^1_{-1}p(x)T^*(e_1)\,dx. $$ > We want to rewrite the left hand side to be also in the form of $\int^1_{-1}p(x)q(x)\,dx$, then we have $\langle p(x), q(x)\rangle=\langle p(x), T^*(e_1)\rangle$ for all $p$ and we can deduce that $T^*(e_1)=q(x)$. The left hand side of (3) is an inner product in $W$ that gives $$ \begin{align} \langle T(p), (1, 0)\rangle &= 2\int^1_0 p(x)\,dx\\ &=\int^1_{-1}p(x)(1+\frac{3}{2}x)\,dx\\ &=\langle p, 1+\frac{3}{2}x\rangle.\tag{4} \end{align} $$ > Exercise: > Find $q(x)\in\mathbb{P}_1$ such that > $$ > \int^1_0 2p(x)\,dx = \int^1_{-1}p(x)q(x)\,dx, \quad \forall p\in\mathbb{P}_1. > $$ > > > It turns out that $q(x)=1 + \frac{3}{2}x$. Similarly, $T^*(e_2)$ should satisfy $$ \langle T(p), e_2\rangle = \langle p, T^*(e_2)\rangle, $$ and we easily obtain $T^*(e_2)=3$. Therefore, $$ T^*(e_1) = 1+\frac{3}{2}x, \quad T^*(e_2)=3, $$ and $$ \tag{5} T^*((u, v)) = u + 3v+\frac{3u}{2}x. $$ --- ### Isometry :::info **Definition:** Let $V, W$ be *normed spaces*, a linear transformation $U:V\to W$ is called an **isometry** if $$ \tag{6} \|U({\bf v})\| = \|{\bf v}\|, \quad \forall{\bf v}\in V. $$ ::: --- **Remark:** 1. Let ${\bf u}, {\bf v}\in V$, where $V$ is a ***real*** inner product space, we have $$ \tag{7} \|{\bf u} + {\bf v}\|^2 = \|{\bf u}\|^2 + \|{\bf v}\|^2 + 2\langle {\bf u}, {\bf v}\rangle. $$ 2. Let ${\bf u}, {\bf v}\in V$, where $V$ is an inner product space, we have $$ \tag{8} \|{\bf u} + {\bf v}\|^2 = \|{\bf u}\|^2 + \|{\bf v}\|^2 + 2\text{Real}\left(\langle {\bf u}, {\bf v}\rangle\right). $$ **Lemma: (polarization identity)** 1. Let ${\bf u}, {\bf v}\in V$, where $V$ is a ***real*** inner product space, we have $$ \tag{9} \langle {\bf u}, {\bf v}\rangle = \frac{1}{4}\left(\|{\bf u} + {\bf v}\|^2 - \|{\bf u} - {\bf v}\|^2\right) , \quad \forall {\bf u,v}\in V. $$ 2. Let ${\bf u}, {\bf v}\in V$, where $V$ is an inner product space, we have, for all ${\bf u,v}\in V$, $$ \tag{10} \langle {\bf u}, {\bf v}\rangle = \frac{1}{4}\left(\|{\bf u} + {\bf v}\|^2 - \|{\bf u} - {\bf v}\|^2 + i\|{\bf u} + i{\bf v}\|^2 - i\|{\bf u} - i{\bf v}\|^2\right). $$ --- **Theorem:** Let $V, W$ be *inner product spaces*. The operator $U:V\to W$ is an isometry if and only if $$ \tag{11} \langle U({\bf u}), U({\bf v})\rangle = \langle {\bf u}, {\bf v}\rangle, \quad \forall {\bf u,v}\in V. $$ * Proof: > ($\Leftarrow$) > Choose ${\bf u}={\bf v}$, then > $$ > \|U({\bf v})\|^2 = \langle U({\bf v}), U({\bf v})\rangle = \langle {\bf v}, {\bf v}\rangle = \|{\bf v}\|^2. > $$ > > > ($\Rightarrow$) > > Here we assume ***real*** inner product space. The derivation of the general version is similar. > > $$ > \begin{align} > \langle {\bf u}, {\bf v}\rangle &\xlongequal[\text{polarization identity}]{} \frac{1}{4}\left(\|{\bf u} + {\bf v}\|^2 - \|{\bf u} - {\bf v}\|^2\right)\\[.2cm] > &\xlongequal[\text{isometry}]{} \frac{1}{4}\left(\|U({\bf u} + {\bf v})\|^2 - \|U({\bf u} - {\bf v})\|^2\right)\\[.2cm] > &\xlongequal[\text{linearity}]{}\frac{1}{4}\left(\|U({\bf u}) + U({\bf v})\|^2 - \|U({\bf u}) - U({\bf v})\|^2\right)\\[.2cm] > &\xlongequal[\text{polarization identity}]{}\langle U({\bf u}), U({\bf v})\rangle. > \end{align} > $$ **Lemma:** Let $V, W$ be *inner product spaces*. The operator $U:V\to W$ is an isometry if and only if $U^*U=I$, where $I$ is the identity transformation. * Proof: > ($\Leftarrow$) > $$ > \|U{\bf v}\|^2=\langle U{\bf v}, U{\bf v}\rangle = \langle {\bf v}, U^*U{\bf v}\rangle = \langle {\bf v}, {\bf v}\rangle=\|{\bf v}\|^2. > $$ > > ($\Rightarrow$) > Suppose $U$ is an isometry, we want to show that > $$ > U^*U{\bf v}={\bf v}, \quad \forall{\bf v}\in V. > $$ > > > Fix ${\bf v}\in V$, given ${\bf u}\in V$, since $U$ is an isometry, we have (11) and > > $$ > > \langle {\bf u}, {\bf v}\rangle = \langle U{\bf u}, U{\bf v}\rangle= \langle {\bf u}, U^*U{\bf v}\rangle. > > $$ > > Therefore, $\langle {\bf u}, {\bf v}\rangle = \langle {\bf u}, U^*U{\bf v}\rangle$ for all ${\bf u}\in V$, that gives ${\bf v}=U^*U{\bf v}$. **Corollary:** 1. An isometry is left invertible. 2. An isometry is a one-to-one map. 3. The kernel of an isometry contains only the zero vector. :::info **Definition:** An invertible isometry is called **unitary**. ::: **Remark:** An unitary transformation in a *real* inner product space is often called an **orthogonal transformation**. **Proposition:** An isometry $U:V\to W$ is unitary if and only if $\text{dim}(V) = \text{dim}(W)$. > Let $U:V\to W$ be an isometry. > $U$ is unitary if and only if $\text{dim}(V) = \text{dim}(W)$. * Proof: > ($\Rightarrow$) > $U$ is unitary, so $U$ is invertible, one-to-one and onto. That means $\text{Ker}(U)=\{{\bf 0}\}$ and $\text{Ran}(U)=W$. > > Based on the [Rank-Nullity Theorem](https://hackmd.io/@teshenglin/2024LA2_ch5_5) we can deduce that that > $$ > \text{dim}(V) = \text{dim}(\text{Ker}(U)) + \text{dim}(\text{Ran}(U))= \text{dim}(\text{Ran}(U))=\text{dim}(W). > $$ > > ($\Leftarrow$) > Let $U:V\to W$ be an isometry and assume $\text{dim}(V) = \text{dim}(W)$. > > Since $U$ is an isometry, $\text{Ker}(U)=\{{\bf 0}\}$ and we can deduce that > $$ > \text{dim}(W)=\text{dim}(V) = \text{dim}(\text{Ker}(U)) + \text{dim}(\text{Ran}(U))= \text{dim}(\text{Ran}(U)), > $$ > where the second equality comes from the Rank-Nullity Theorem. > > We also knew that $\text{Ran}(U)\subseteq W$. > > Assume $\text{dim}(\text{Ran}(U))=n$, there exists $\{{\bf w}_1, \cdots, {\bf w}_n\}\subset\text{Ran}(U)$ that is linearly independent such that $\text{Ran}(U) = \text{span}\{{\bf w}_1, \cdots, {\bf w}_n\}$. Since $\text{dim}(W)=n$, by [replacement Theorem](https://hackmd.io/@teshenglin/2024LA2_ch1_7) we can conclude that $\{{\bf w}_1, \cdots, {\bf w}_n\}$ is also a generating set of $W$, so $\text{Ran}(U)=W$ and $U$ is onto. **Proposition:** Let $U:V\to W$ be an unitary transformation, then 1. $U^{-1}=U^*$; 2. $U^*$ is unitary; 3. If $\{{\bf v}_1, \cdots, {\bf v}_n\}\subset V$ is an orthonormal basis, $\{U({\bf v}_1), \cdots, U({\bf v}_n)\}\subset W$ is an orthonormal basis. --- ### Rigid motion :::info **Definition:** A rigid motion in a *real* inner product space $V$ is a *function* $f:V\to V$ such that $$ \tag{12} \|f({\bf u})-f({\bf v})\| = \|{\bf u}-{\bf v}\|. $$ ::: **Remark:** We do not assume $f$ is linear. **Lemma:** Let $f:V\to V$ be a rigid motion and $V$ is an *real* inner product space. We can define $T({\bf v})=f({\bf v})-f({\bf 0})$, then for all ${\bf u}, {\bf v}\in V$, we have 1. $$ \tag{13} \|T({\bf v})\| = \|{\bf v}\|; $$ 2. $$ \tag{14} \|T({\bf u})-T({\bf v})\| = \|{\bf u} - {\bf v}\|; $$ 3. $$ \tag{15} \langle T({\bf u}), T({\bf v})\rangle = \langle{\bf u}, {\bf v}\rangle. $$ * Proof: > (1.) > $$ > \|T({\bf v})\| = \|f({\bf v})-f({\bf 0})\|\xlongequal[\text{rigid motion}]{}\|{\bf v}-{\bf 0}\|=\|{\bf v}\|. > $$ > > (2.) > $$ > \begin{align} > \|T({\bf u})-T({\bf v})\| &= \|f({\bf u})-f({\bf 0})-(f({\bf v})-f({\bf 0}))\| \\ > &= \|f({\bf u})-f({\bf v})\| \\ > &= \|{\bf u} - {\bf v}\|. > \end{align} > $$ > > (3.) > > By direct computation and use (1.) we have > $$ > \begin{align} > \|T({\bf u})-T({\bf v})\|^2 &= \|T({\bf u})\|^2+\|T({\bf v})\|^2 -2\langle T({\bf u}), T({\bf v})\rangle\\ > &=\|{\bf u}\|^2+\|{\bf v}\|^2 -2\langle T({\bf u}), T({\bf v})\rangle, > \end{align} > $$ > and, use (2.), we obtain > $$ > \begin{align} > \|T({\bf u})-T({\bf v})\|^2 &= \|{\bf u}-{\bf v}\|^2\\ > &=\|{\bf u}\|^2+\|{\bf v}\|^2 -2\langle {\bf u}, {\bf v}\rangle. > \end{align} > $$ > Hence, $\langle T({\bf u}), T({\bf v})\rangle = \langle{\bf u}, {\bf v}\rangle$. > --- **Corollary:** $T:V\to W$ is a linear transformation if and only if $$ \tag{16} T(\alpha{\bf u}+ {\bf v}) = \alpha T({\bf u})+ T({\bf v}), \quad \forall {\bf u}, {\bf v}\in V, \quad \alpha\in F. $$ * Proof: > ($\Rightarrow$) > Trivial! > > ($\Leftarrow$) > Let $\alpha=1$, $T({\bf u}+{\bf v}) = T({\bf u})+ T({\bf v})$. > Let $\alpha=1$, ${\bf u}={\bf v}={\bf 0}$, $T({\bf 0}) = 2T({\bf 0})$, so $T({\bf 0})={\bf 0}$. > Let ${\bf v}={\bf 0}$, $T(\alpha{\bf u}) = \alpha T({\bf u})$. --- **Theorem:** Let $f:V\to V$ be a rigid motion in a *real* inner product space $V$ and let $T:V\to V$ be defined as $T({\bf v}) = f({\bf v})-f({\bf 0})$. Then $T$ is a linear orthogonal transformation. * Proof: > claim: $\|\alpha T({\bf u})+ T({\bf v}) - T(\alpha{\bf u}+ {\bf v})\|=0$, for all ${\bf u}, {\bf v}\in V$, $\alpha\in F$. > > > We use (13), (14) and (15) to have > > $$ > > \begin{align} > > &\quad \|\alpha T({\bf u})+ T({\bf v}) - T(\alpha{\bf u}+ {\bf v})\|^2\\ > > &= \|\alpha T({\bf u})\|^2 + \|T({\bf v}) - T(\alpha{\bf u}+ {\bf v})\|^2 + 2\langle\alpha T({\bf u}), T({\bf v}) - T(\alpha{\bf u}+ {\bf v})\rangle\\ > > &= \|\alpha T({\bf u})\|^2 + \|T({\bf v}) - T(\alpha{\bf u}+ {\bf v})\|^2 + 2\alpha\langle T({\bf u}), T({\bf v})\rangle- 2\alpha\langle T({\bf u}), T(\alpha{\bf u}+ {\bf v})\rangle\\ > > &= |\alpha|^2\|{\bf u}\|^2 + \|{\bf v} - (\alpha{\bf u}+{\bf v})\|^2 + 2\alpha\langle {\bf u}, {\bf v}\rangle-2\alpha\langle {\bf u}, \alpha{\bf u}+ {\bf v}\rangle\\ > > &=0. > > \end{align} > > $$ > Therefore, $T$ is a linear transformation. > > Since $T$ is linear and satisfies (13), so $T$ is an isometry transformation. > > Since $T:V\to V$, $\text{dim}(V)=\text{dim}(V)$, and is an isometry, based on the **Proposition** we shown before, $T$ is an orthogonal transformation. **Theorem:** Let $f:V\to V$ be a rigid motion, then there exists an unique ${\bf v}_0\in V$ and an unique $U:V\to V$ that is an orthogonal transformation such that $f({\bf v}) = U{\bf v} + {\bf v}_0$, for all ${\bf v}\in V$. * Proof: > Define $U({\bf v})=f({\bf v})-f({\bf 0})$, then $U$ is an orthogonal transformation. > Define ${\bf v}_0=f({\bf 0})$, then $f({\bf v}) = U({\bf v}) + {\bf v}_0$, for all ${\bf v}\in V$. > > (uniqueness) > Suppose there exists ${\bf u}_0\in V$ and $T:V\to V$ that is an orthogonal transformation such that $f({\bf v}) = T({\bf v}) + {\bf u}_0$, for all ${\bf v}\in V$. > Then, > $$ > f({\bf v}) = T({\bf v}) + {\bf u}_0 = U({\bf v}) + {\bf v}_0. > $$ > Since $T$ and $U$ are both linear, we have > $$ > f({\bf 0}) = T({\bf 0}) + {\bf u}_0 = {\bf u}_0 ={\bf v}_0= U({\bf 0}) + {\bf v}_0. > $$ > So ${\bf u}_0={\bf v}_0$. > We then have $T({\bf v})=U({\bf v})$ for all ${\bf v}\in V$ that leads to $T=U$. **Corollary:** We also have, for all ${\bf v}\in V$, $f({\bf v}) = U({\bf v} + \tilde{{\bf v}}_0)$, where $\tilde{{\bf v}}_0 =U^{-1}{\bf v}_0$.