--- title: Ch5-4 tags: Linear algebra GA: G-77TT93X4N1 --- # Chapter 5 extra note 4 ## Selected lecture notes > orthogonal complement > direct sum > linear functional > Riesz Representation Theorem > adjoint linear transformation ### Orthogonal complement :::info **Definition:** For a vector subspace $E$, its **orthogonal complement** $E^{\perp}=\{{\bf v}\in V | {\bf v}\perp E\}$. ::: **Proposition:** $E^{\perp}$ is a vector subspace. * Proof: > Let ${\bf v}_1, {\bf v}_2\in E^\perp$, fix $\alpha, \beta\in F$. > > claim: $\alpha_1{\bf v}_1+\alpha_2{\bf v}_2\in E^\perp$: > > Given ${\bf u}\in E$, since ${\bf v}_1, {\bf v}_2\in E^\perp$, we have > $$ > \langle{\bf v}_1, {\bf u}\rangle = \langle{\bf v}_2, {\bf u}\rangle = 0. > $$ > So > $$ > 0 = \alpha_1\langle{\bf v}_1, {\bf u}\rangle + \alpha_2 \langle{\bf v}_2, {\bf u}\rangle = \langle\alpha_1{\bf v}_1+\alpha_2{\bf v}_2, {\bf u}\rangle, > $$ > that is, $(\alpha_1{\bf v}_1+\alpha_2{\bf v}_2) \perp {\bf u}$. > Therefore, $(\alpha_1{\bf v}_1+\alpha_2{\bf v}_2) \perp {\bf u}$, $\forall {\bf u}\in E$. **Proposition:** $E \cap E^\perp = \{{\bf 0}\}$. * Proof: > At first, we show that $E \cap E^\perp$ is not an empty set, and it contains at least one element which is the zero vector, ${\bf 0}$. > > Since $E$ and $E^\perp$ are both vector subspaces, so ${\bf 0}\in E$ and ${\bf 0}\in E^\perp$, and we have ${\bf 0}\in (E \cap E^\perp)$. > > Secondly, we show that ${\bf 0}$ is the only element. > > Let ${\bf v}\in E \cap E^\perp$. We have ${\bf v}\in E$ and ${\bf v}\in E^\perp$, so > $$ > 0=\langle{\bf v}, {\bf v}\rangle=\|{\bf v}\|^2. > $$ > Hence ${\bf v}={\bf 0}$. **Proposition:** Let $E\subset V$, for any ${\bf v}\in V$, there exists an uniqe decomposition $$ {\bf v} = {\bf v}_1 + {\bf v}_2, \quad {\bf v}_1\in E, \quad {\bf v}_2\in E^\perp. $$ * Proof: > (Existence) > Given ${\bf v}\in V$, we define ${\bf v}_1=P_E{\bf v}\in E$, and ${\bf v}_2={\bf v}-{\bf v}_1$. > By the definition of orthogonal projection we have ${\bf v}_2\in E^\perp$. > > > (Uniqueness) > Assume > $$ > {\bf v} = {\bf v}_1 + {\bf v}_2 = {\bf w}_1 + {\bf w}_2, > $$ > where ${\bf v}_1, {\bf w}_1\in E$ and ${\bf v}_2, {\bf w}_2\in E^\perp$. > We define ${\bf u} = {\bf v}_1 - {\bf w}_1$. Since ${\bf v}_1, {\bf w}_1\in E$ we must have ${\bf u}\in E$. In addition, we find > $$ > {\bf u} = {\bf v}_1 - {\bf w}_1 = ({\bf v} - {\bf v}_2) - ({\bf v} - {\bf w}_2) = {\bf w}_2 - {\bf v}_2. > $$ > Since ${\bf v}_2, {\bf w}_2\in E^\perp$ we must have ${\bf u}\in E^\perp$. As a result, ${\bf u}\in (E\cap E^\perp) = {\bf 0}$. We must have ${\bf u}={\bf 0}$, and ${\bf v}_1={\bf w}_1$, ${\bf v}_2={\bf w}_2$. **Proposition:** Let $E\subset V$, for any ${\bf v}\in V$, $$ P_{E^\perp}{\bf v} = {\bf v}-P_E{\bf v}. $$ * Proof: > Let ${\bf v}_2={\bf v}-P_E{\bf v}$, then ${\bf v}_2\perp E$, so we have > (1) ${\bf v}_2\in E^\perp$. > Besides, ${\bf v} - {\bf v}_2 = P_E{\bf v}\perp E^\perp$. So we obtain > (2) $({\bf v} - {\bf v}_2) \perp E^\perp$. > By (1), (2) and the definition of orthogonal projection, we have > $$ > P_{E^\perp}{\bf v} = {\bf v}-P_E{\bf v}. > $$ :::info **Definition:** Let $W_1$ and $W_2$ be vector subspaces, we define $W_1+W_2$ be a set satisfies $$ W_1+W_2 = \{{\bf v} | {\bf v} = {\bf w}_1 + {\bf w}_2, \quad {\bf w}_1\in W_1, {\bf w}_2\in W_2\}. $$ ::: **Proposition:** $W_1+W_2$ is a vector subspace. **Proposition:** A vector space $V$ is called a **direct sum** of subspaces $W_1$ and $W_2$ if $W_1\cap W_2=\{{\bf 0}\}$ and $V=W_1+W_2$. We denote it by $V=W_1\oplus W_2$. **Proposition:** $V = E\oplus E^\perp$. **Proposition:** $\left(E^\perp\right)^\perp = E$. * Proof: > Let ${\bf u}\in E$, then $\langle{\bf u}, {\bf v}\rangle=0$, for all ${\bf v}\in E^\perp$. > Since $\langle{\bf u}, {\bf v}\rangle=0$, for all ${\bf v}\in E^\perp$, so ${\bf u}\in \left(E^\perp\right)^\perp$. > Therefore, $E\subseteq \left(E^\perp\right)^\perp$. > > Let ${\bf u}\in \left(E^\perp\right)^\perp\subseteq V$, then ${\bf u} = {\bf v}+{\bf w}$ where ${\bf v}\in E$ and ${\bf w}\in E^\perp$. > Since ${\bf u}\in \left(E^\perp\right)^\perp$ and ${\bf v}\in E \subseteq \left(E^\perp\right)^\perp$, so ${\bf w}={\bf u}-{\bf v}\in \left(E^\perp\right)^\perp$. > But we also have ${\bf w}\in E^\perp$. > As a result we must have ${\bf w}={\bf 0}$, and ${\bf u}={\bf v}\in E$. > Therefore, $\left(E^\perp\right)^\perp\subseteq E$. ### Linear functional :::info **Definition:** A **linear functional** on a vector space $V$ is a linear map from $V$ to $\mathbb{R}$. That is, a linear functional belongs to $\mathcal{L}(V, \mathbb{R})$. ::: #### Examples of linear functionals * Example 1: $$ \phi_1:\mathbb{P}_2\to\mathbb{R}, \quad \phi(p)=p(1). $$ * Example 2: $$ \phi_1:\mathbb{P}_2\to\mathbb{R}, \quad \phi(p)=\int^1_0 p(x)\,dx. $$ * Example 3: $$ \phi_1:\mathbb{P}_2\to\mathbb{R}, \quad \phi(p)=\int^1_0 p(x)\sin(x)\,dx. $$ **Riesz Representation Theorem:** Suppose $V$ is a finite dimentional inner product space and $\phi:V\to\mathbb{R}$ is a linear functional, then there exists an unique ${\bf u}\in V$ such that $$ \phi({\bf v}) = \langle{\bf v}, {\bf u}\rangle, \quad \forall{\bf v}\in V. $$ * Proof: > (existence) > Let $\{e_1, \cdots, e_n\}\subset V$ be an orthonormal basis of $V$. > > Given ${\bf v}\in V$, we then have > $$ > \begin{align} > {\bf v} &= \alpha_1 e_1 + \cdots + \alpha_n e_n\\ > &= \langle{\bf v}, e_1\rangle e_1 + \cdots + \langle{\bf v}, e_n\rangle e_n. > \end{align} > $$ > Since $\phi$ is linear, > $$ > \begin{align} > \phi({\bf v}) &= \phi\left(\langle{\bf v}, e_1\rangle e_1 + \cdots + \langle{\bf v}, e_n\rangle e_n\right)\\ > &=\langle{\bf v}, e_1\rangle\phi(e_1) + \cdots +\langle{\bf v}, e_n\rangle\phi(e_n)\\ > &=\langle{\bf v}, \phi(e_1)e_1\rangle + \cdots +\langle{\bf v}, \phi(e_n)e_n\rangle\\ > &=\langle{\bf v}, \phi(e_1)e_1+\cdots+\phi(e_n)e_n\rangle. > \end{align} > $$ > Let us define > $$ > {\bf u} = \phi(e_1)e_1+\cdots+\phi(e_n)e_n, > $$ > it is then clear that $\phi(\bf v)=\langle{\bf v}, {\bf u}\rangle$. > > (uniqueness) > Suppose $\exists {\bf u}_1, {\bf u}_2\in V$ such that > $$ > \phi({\bf v})=\langle {\bf v}, {\bf u}_1\rangle = \langle {\bf v}, {\bf u}_2\rangle, \quad \forall {\bf v}\in V. > $$ > Then we have > $$ > 0 = \langle {\bf v}, {\bf u}_1-{\bf u}_2\rangle, \quad \forall {\bf v}\in V. > $$ > Therefore, we must have ${\bf u}_1-{\bf u}_2={\bf 0}$ and ${\bf u}_1={\bf u}_2$. ### Adjoint linear transformation :::info **Definition:** Let $V$ and $W$ be inner product space and $T:V\to W$ be a linear transformation. The map $T^*:W\to V$ is called an adjoint of $T$ if $$ \langle T{\bf v}, {\bf w}\rangle = \langle {\bf v}, T^*{\bf w}\rangle, \quad \forall {\bf v}\in V, {\bf w}\in W. $$ ::: **Remark:** Here we show the existence of the map $T^*$. Given ${\bf w}\in W$, we define $\phi({\bf v})=\langle T{\bf v}, {\bf w}\rangle$. It is clear that $\phi$ is a linear functional. Hence, based on the Riese representation Theorem, there exists ${\bf u}\in V$ such that $$ \phi({\bf v})=\langle {\bf v}, {\bf u}\rangle. $$ We then define $T^*{\bf w}={\bf u}$ and we have $$ \langle T{\bf v}, {\bf w}\rangle = \phi({\bf v})=\langle {\bf v}, {\bf u}\rangle = \langle {\bf v}, T^*{\bf w}\rangle. $$ So the existence of $T^*$ is assured. **Proposition** $T^*$ is an adjoint of $T$ if $$ \langle {\bf w}, T{\bf v}\rangle = \langle T^*{\bf w}, {\bf v}\rangle, \quad \forall {\bf v}\in V, {\bf w}\in W. $$ **Proposition** $T^*$ is unique. * Proof: > Let $S:W\to V$ be a map that also satisfies > $$ > \langle T{\bf v}, {\bf w}\rangle = \langle {\bf v}, S{\bf w}\rangle, \quad \forall {\bf v}\in V, {\bf w}\in W. > $$ > Then > $$ > \langle {\bf v}, S{\bf w}\rangle = \langle T{\bf v}, {\bf w}\rangle = \langle {\bf v}, T^*{\bf w}\rangle, \quad \forall {\bf v}\in V, {\bf w}\in W. > $$ > So > $$ > \langle {\bf v}, (S-T^*){\bf w}\rangle=0, \quad \forall {\bf v}\in V, {\bf w}\in W. > $$ > Hence, $S = T^*$. **Proposition** $T^*$ is linear. * Proof: > Fix ${\bf w}_1, {\bf w}_2\in W$, $\alpha_1, \alpha_2\in F$, given ${\bf v}\in V$, > $$ > \begin{align} > \langle {\bf v}, T^*(\alpha_1{\bf w}_1 + \alpha_2{\bf w}_2)\rangle &= \langle T({\bf v}), \alpha_1{\bf w}_1 + \alpha_2{\bf w}_2\rangle\\ > &=\overline{\alpha_1}\langle T({\bf v}), {\bf w}_1\rangle+\overline{\alpha_2}\langle T({\bf v}), {\bf w}_2\rangle\\ > &=\overline{\alpha_1}\langle {\bf v}, T^*({\bf w}_1)\rangle+\overline{\alpha_2}\langle {\bf v}, T^*({\bf w}_2)\rangle\\ > &=\langle {\bf v}, \alpha_1T^*({\bf w}_1) + \alpha_2T^*({\bf w}_2)\rangle. > \end{align} > $$ > Therefore > $$ > \langle {\bf v}, T^*(\alpha_1{\bf w}_1 + \alpha_2{\bf w}_2)\rangle = \langle {\bf v}, \alpha_1T^*({\bf w}_1) + \alpha_2T^*({\bf w}_2)\rangle, \quad \forall{\bf v}\in V. > $$ > That leads to > $$ > T^*(\alpha_1{\bf w}_1 + \alpha_2{\bf w}_2) = \alpha_1T^*({\bf w}_1) + \alpha_2T^*({\bf w}_2). > $$