--- title: Ch5-2 tags: Linear algebra GA: G-77TT93X4N1 --- # Chapter 5 extra note 2 ## Selected lecture notes > metric > norm > inner product > orthogonal/orthonormal > Pythogorean identity > Parsevals identity ### Metric space :::info **Definition:** A metric (distance function) on $X$ is a function $d:X\times X\to\mathbb{R}$ such that, $\forall x, y, z\in X$, 1. $d(x, y)\ge 0$; 2. $d(x, y) = d(y, x)$; 3. $d(x, y) \le d(x, z) + d(z, y)$; 4. $d(x, y)=0$ if and only if $x=y$. ::: #### Example * Trivial distance: $$ d(x, y) = \begin{cases} 1, & \text{if $x\ne y$}, \\ 0, & \text{if $x=y$}. \end{cases} $$ ### Normed vector space :::info **Definition:** A norm on a vector space $V$ is a function $\|\cdot\|:V\to\mathbb{R}$ such that, $\forall {\bf u}, {\bf v}\in V$, 1. $\|\alpha{\bf u}\| = |\alpha|\|{\bf u}\|$; 2. $\|{\bf u}+{\bf v}\| \le \|{\bf u}\|+\|{\bf v}\|$; 3. $\|{\bf u}\|\ge 0$; 4. $\|{\bf u}\|=0$ if and only if ${\bf u}={\bf 0}$. ::: **Remark** Given a norm $\|\cdot\|$, we can define $$ d({\bf u}, {\bf v}) = \|{\bf u} - {\bf v}\|. $$ Then $d$ is a metric. :::info **Definition:** A vector space with a norm is called a normed space. ::: :::info **Definition:** An inner product space is a normed space. ::: #### Example 1 Let $$ {\bf x} = \begin{bmatrix}x_1 \\ x_2\end{bmatrix}\in\mathbb{R}^2. $$ We define the $p$-norm as $$ \|{\bf x}\|_p = \left(|x_1|^p + |x_2|^p\right)^{1/p}, $$ so $$ \|{\bf x}\|_1 = |x_1| + |x_2|, \quad \|{\bf x}\|_2 = \sqrt{|x_1|^2 + |x_2|^2}. $$ Besides, we define $$ \|{\bf x}\|_{\infty} = \max\{|x_1|, |x_2|\}. $$ #### Example 2 Let $$ {\bf x} = \begin{bmatrix}x_1 \\ \vdots \\ x_n\end{bmatrix}\in\mathbb{R}^n. $$ We define the $p$-norm as $$ \|{\bf x}\|_p = \left(\sum^n_{k=1} |x_k|^p\right)^{1/p}, $$ so $$ \|{\bf x}\|_1 = \sum^n_{k=1} |x_k|, \quad \|{\bf x}\|_2 = \sqrt{\sum^n_{k=1}|x_k|^2}. $$ Also, we define $$ \|{\bf x}\|_{\infty} = \max_{1\le k\le n}\{|x_k|\}. $$ #### Example 3 Given $f(x)$, $x\in[a, b]$, we define the $p$-norm as $$ \|f\|_p = \left(\int^b_a |f(x)|^p\,dx\right)^{1/p}, $$ so $$ \|f\|_1 = \int^b_a |f(x)|\,dx, \quad \|f\|_2 = \sqrt{\int^b_a |f(x)|^2\,dx}. $$ Also, we define $$ \|{\bf x}\|_{\infty} = \max_{x\in[a, b]}\{|f(x)|\}. $$ **Remark** One can see clearly that $2$-norm is induced by usual inner product. **Remark** $$ \text{inner product space} \subset \text{normed space} \subset \text{metric space} $$ --- ### Orthogonality :::info **Definition:** ${\bf u}$ and ${\bf v}$ are orthogonal if $\langle{\bf u}, {\bf v}\rangle=0$ and we write ${\bf u}\perp{\bf v}$. ::: **Remark:** ${\bf 0}\perp{\bf u}, \forall{\bf u}\in V$. **Pythogorean identity:** If ${\bf u}\perp{\bf v}$, then $\|{\bf u}+{\bf v}\|^2=\|{\bf u}\|^2 + \|{\bf v}\|^2$. * Proof: > $$ > \|{\bf u}+{\bf v}\|^2=\langle{\bf u}+{\bf v}, {\bf u}+{\bf v}\rangle = \langle{\bf u}, {\bf u}\rangle+\langle{\bf u}, {\bf v}\rangle+\langle{\bf v}, {\bf u}\rangle+\langle{\bf v}, {\bf v}\rangle. > $$ > Since ${\bf u}\perp{\bf v}$, $\langle{\bf u}, {\bf v}\rangle=0$ and > $$ > \langle{\bf v}, {\bf u}\rangle=\overline{\langle{\bf u}, {\bf v}\rangle}=\bar{0} = 0. > $$ > Therefore, > $$ > \|{\bf u}+{\bf v}\|^2=\langle{\bf u}, {\bf u}\rangle+\langle{\bf v}, {\bf v}\rangle = \|{\bf u}\|^2 + \|{\bf v}\|^2. > $$ > :::info **Definition:** $\{{\bf v}_1, \cdots, {\bf v}_n\}$ is orthogonal if ${\bf v}_i\perp{\bf v}_j$ for all $i\ne j$. ::: **Generalized Pythogorean identity:** Let $\{{\bf v}_1, \cdots, {\bf v}_n\}$ be an orthogonal set, then $$ \left\|\sum^n_{k=1} \alpha_k {\bf v}_k\right\|^2 = \sum^n_{k=1}|\alpha_k|^2\|{\bf v}_k\|^2. $$ * Proof: > $$ > \begin{align} > \left\|\sum^n_{k=1} \alpha_k {\bf v}_k\right\|^2 &= \langle\sum^n_{k=1} \alpha_k {\bf v}_k, \sum^n_{k=1} \alpha_k {\bf v}_k\rangle \\ > &= \sum^n_{k=1}\sum^n_{\ell=1}\langle\alpha_k{\bf v}_k, \alpha_{\ell}{\bf v}_{\ell}\rangle\\ > (\text{since $\{v_k\}$ is orthogonal})\,&=\sum^n_{k=1}\langle\alpha_k{\bf v}_k, \alpha_k{\bf v}_k\rangle\\ > &=\sum^n_{k=1}|\alpha_k|^2\|{\bf v}_k\|^2. > \end{align} > $$ **Corollary:** Any orthogonal system of non-zero vectors is linearly independent. * Proof: > Let $\{{\bf v}_1, \cdots, {\bf v}_n\}$ be an orthogonal set and ${\bf v}_k\ne {\bf 0}$ $\forall k$. > Assume $\alpha_1{\bf v}_1 + \cdots \alpha_n{\bf v}_n={\bf 0}$, we have > $$ > 0 = \|{\bf 0}\|^2 = \|\alpha_1{\bf v}_1 + \cdots \alpha_n{\bf v}_n\|^2 = \sum^n_{k=1}|\alpha_k|^2\|{\bf v}_k\|^2. > $$ > So we must have $|\alpha_k|\|{\bf v}_k\|=0$, $\forall k$. > Since ${\bf v}_k\ne{\bf 0}$, it means that $\alpha_k=0$ $\forall k$. :::info **Definition:** $\{{\bf v}_1, \cdots, {\bf v}_n\}$ is orthonormal if it is orthogonal and $\|{\bf v}_k\|=1$ $\forall k$. ::: **Corollary:** Any orthonormal system is linearly independent. * Proof: > An orthonormal system is orthogonal and does not contains zero vectors, therefore, it is linearly independent. ### Coordinates of vectors Let $\{{\bf v}_1, \cdots, {\bf v}_n\}$ be an orthogonal set. Assume $$ {\bf u} = \alpha_1{\bf v}_1 + \cdots + \alpha_n{\bf v}_n, $$ we have $\langle{\bf u}, {\bf v}_k\rangle = \alpha_k\langle{\bf v}_k, {\bf v}_k\rangle$, that is, $$ \alpha_k = \frac{\langle{\bf u}, {\bf v}_k\rangle}{\langle{\bf v}_k, {\bf v}_k\rangle}. $$ **Remark:** A remarkable fact here is that the coordinates can be calculated directly using the inner product. Given $\{{\bf v}_1, \cdots, {\bf v}_n\}$ be an orthogonal basis, we have $$ {\bf u} = \frac{\langle{\bf u}, {\bf v}_1\rangle}{\|{\bf v}_1\|^2}{\bf v}_1 + \cdots + \frac{\langle{\bf u}, {\bf v}_n\rangle}{\|{\bf v}_n\|^2}{\bf v}_n. $$ #### Example: Fourier series > I must admit that the following statements are a bit sloppy. We only consider and prove problems with finite dimension, but the following are defined on an infinite dimension. Recall in Calculus: For $m,n\in\mathbb{N}\cup\{0\}$, $$ \begin{align} &\int^{\pi}_{-\pi} \sin(mx)\cos(nx)\,dx = 0,\\ &\int^{\pi}_{-\pi} \sin(mx)\sin(nx)\,dx = \begin{cases} 0, & \text{if $m\ne n$ or $m=n=0$}, \\ \pi, & \text{if $m=n\ne 0$}, \end{cases}\\ &\int^{\pi}_{-\pi} \cos(mx)\cos(nx)\,dx = \begin{cases} 0, & \text{if $m\ne n$}, \\ \pi, & \text{if $m=n\ne 0$},\\ 2\pi, & \text{if $m=n=0$}. \end{cases} \end{align} $$ That is, under the inner product $\langle f, g\rangle = \int^{\pi}_{-\pi}f(x)g(x)\,dx$, the following set is an orthogonal set: $$ S = \{1, \sin(x), \cos(x), \sin(2x), \cos(2x), \cdots \}. $$ > Note that we have removed $\sin(0\cdot x)$ since it's a zero function, and as a result $S$ is linearly independent. We then have, given $f\in\text{span}\{S\}$, $$ f(x) = a_0 + \sum^{\infty}_{k=1} a_k\cos(kx) + b_k\sin(kx), $$ where $$ \begin{align} &a_0 = \frac{\langle f, 1\rangle}{\langle 1, 1\rangle} =\frac{1}{2\pi} \int^{\pi}_{-\pi}f(x)\,dx,\\ &a_k = \frac{\langle f, \cos(kx)\rangle}{\langle \cos(kx), \cos(kx)\rangle} =\frac{1}{\pi} \int^{\pi}_{-\pi}f(x)\cos(kx)\,dx,\\ &b_k = \frac{\langle f, \sin(kx)\rangle}{\langle \sin(kx), \sin(kx)\rangle} =\frac{1}{\pi} \int^{\pi}_{-\pi}f(x)\sin(kx)\,dx. \end{align} $$ **Parsevals identity:** (extension of generalized Pythagorean identity) If $f\in\text{span }\{S\}$, $$ \|f\|^2 = \int^{\pi}_{-\pi} |f(x)|^2\,dx = 2\pi|a_0|^2 + \sum^{\infty}_{k=1} \pi|a_k|^2 + \pi|b_k|^2. $$ **Corollary:** If $f\in\text{span }\{S\}$ and $\int^{\pi}_{-\pi} |f(x)|^2\,dx<\infty$, then $\sum^{\infty}_{k=1} |a_k|^2<\infty$ and $\sum^{\infty}_{k=1} |b_k|^2<\infty$, which implies $$ \lim_{k\to\infty} a_k=0, \quad \lim_{k\to\infty} b_k=0. $$