Chapter 5 extra note 2

Selected lecture notes

metric
norm
inner product
orthogonal/orthonormal
Pythogorean identity
Parsevals identity

Metric space

Definition:
A metric (distance function) on

X is a function
d:X×XR
such that,
x,y,zX
,

  1. d(x,y)0
    ;
  2. d(x,y)=d(y,x)
    ;
  3. d(x,y)d(x,z)+d(z,y)
    ;
  4. d(x,y)=0
    if and only if
    x=y
    .

Example

  • Trivial distance:
    d(x,y)={1,if xy,0,if x=y.

Normed vector space

Definition:
A norm on a vector space

V is a function
:VR
such that,
u,vV
,

  1. αu=|α|u
    ;
  2. u+vu+v
    ;
  3. u0
    ;
  4. u=0
    if and only if
    u=0
    .

Remark
Given a norm

, we can define
d(u,v)=uv.

Then
d
is a metric.

Definition:
A vector space with a norm is called a normed space.

Definition:
An inner product space is a normed space.

Example 1

Let

x=[x1x2]R2.
We define the
p
-norm as
xp=(|x1|p+|x2|p)1/p,

so
x1=|x1|+|x2|,x2=|x1|2+|x2|2.

Besides, we define
x=max{|x1|,|x2|}.

Example 2

Let

x=[x1xn]Rn.
We define the
p
-norm as
xp=(k=1n|xk|p)1/p,

so
x1=k=1n|xk|,x2=k=1n|xk|2.

Also, we define
x=max1kn{|xk|}.

Example 3

Given

f(x),
x[a,b]
, we define the
p
-norm as
fp=(ab|f(x)|pdx)1/p,

so
f1=ab|f(x)|dx,f2=ab|f(x)|2dx.

Also, we define
x=maxx[a,b]{|f(x)|}.

Remark
One can see clearly that

2-norm is induced by usual inner product.

Remark

inner product spacenormed spacemetric space


Orthogonality

Definition:

u and
v
are orthogonal if
u,v=0
and we write
uv
.

Remark:

0u,uV.

Pythogorean identity:
If

uv, then
u+v2=u2+v2
.

  • Proof:

    u+v2=u+v,u+v=u,u+u,v+v,u+v,v.
    Since
    uv
    ,
    u,v=0
    and
    v,u=u,v=0¯=0.

    Therefore,
    u+v2=u,u+v,v=u2+v2.

Definition:

{v1,,vn} is orthogonal if
vivj
for all
ij
.

Generalized Pythogorean identity:
Let

{v1,,vn} be an orthogonal set, then
k=1nαkvk2=k=1n|αk|2vk2.

  • Proof:

    k=1nαkvk2=k=1nαkvk,k=1nαkvk=k=1n=1nαkvk,αv(since {vk} is orthogonal)=k=1nαkvk,αkvk=k=1n|αk|2vk2.

Corollary:
Any orthogonal system of non-zero vectors is linearly independent.

  • Proof:

    Let

    {v1,,vn} be an orthogonal set and
    vk0
    k
    .
    Assume
    α1v1+αnvn=0
    , we have
    0=02=α1v1+αnvn2=k=1n|αk|2vk2.

    So we must have
    |αk|vk=0
    ,
    k
    .
    Since
    vk0
    , it means that
    αk=0
    k
    .

Definition:

{v1,,vn} is orthonormal if it is orthogonal and
vk=1
k
.

Corollary:
Any orthonormal system is linearly independent.

  • Proof:

    An orthonormal system is orthogonal and does not contains zero vectors, therefore, it is linearly independent.

Coordinates of vectors

Let

{v1,,vn} be an orthogonal set. Assume
u=α1v1++αnvn,

we have
u,vk=αkvk,vk
, that is,
αk=u,vkvk,vk.

Remark:
A remarkable fact here is that the coordinates can be calculated directly using the inner product.

Given

{v1,,vn} be an orthogonal basis, we have
u=u,v1v12v1++u,vnvn2vn.

Example: Fourier series

I must admit that the following statements are a bit sloppy. We only consider and prove problems with finite dimension, but the following are defined on an infinite dimension.

Recall in Calculus: For

m,nN{0},
ππsin(mx)cos(nx)dx=0,ππsin(mx)sin(nx)dx={0,if mn or m=n=0,π,if m=n0,ππcos(mx)cos(nx)dx={0,if mn,π,if m=n0,2π,if m=n=0.

That is, under the inner product
f,g=ππf(x)g(x)dx
, the following set is an orthogonal set:
S={1,sin(x),cos(x),sin(2x),cos(2x),}.

Note that we have removed

sin(0x) since it's a zero function, and as a result
S
is linearly independent.

We then have, given

fspan{S},
f(x)=a0+k=1akcos(kx)+bksin(kx),

where
a0=f,11,1=12πππf(x)dx,ak=f,cos(kx)cos(kx),cos(kx)=1πππf(x)cos(kx)dx,bk=f,sin(kx)sin(kx),sin(kx)=1πππf(x)sin(kx)dx.

Parsevals identity: (extension of generalized Pythagorean identity)
If

fspan {S},
f2=ππ|f(x)|2dx=2π|a0|2+k=1π|ak|2+π|bk|2.

Corollary:
If

fspan {S} and
ππ|f(x)|2dx<
, then
k=1|ak|2<
and
k=1|bk|2<
, which implies
limkak=0,limkbk=0.