--- title: Ch1-6 tags: Linear algebra GA: G-77TT93X4N1 --- # Chapter 1 extra note 6 > Invertible transformation > one-to-one > onto ## Selected lecture notes: ### Invertible transformation :::info **Definition:** Identity transformation: $I_v:V\to V$, $I_v({\bf v})={\bf v}$, $\forall {\bf v}\in V$. ::: **Proposition:** For any linear transformation, $T:V\to W$, we have $T\circ I_v = T$ and $I_w\circ T = T$. * Proof: > Given ${\bf v}\in V$, $$ (T\circ I_v)({\bf v}) = T(I_v({\bf v})) = T({\bf v}). $$ > Similarly, $$ (I_w \circ T)({\bf v}) = I_w(T({\bf v})) = T({\bf v}). $$ :::info **Definition:** Let $T:V\to W$ be a linear transformation, $T$ is ***left invertible*** if $\exists B:W \to V$ such that $B\circ T = I_v$. ::: :::info **Definition:** Let $T:V\to W$ be a linear transformation, $T$ is ***right invertible*** if $\exists C:W \to V$ such that $T\circ C = I_w$. ::: :::info **Definition:** Let $T:V\to W$ be a linear transformation, $T$ is ***invertible*** if it is both left and right invertible. ::: **Theorem:** Let $T:V\to W$ be a linear transformation, $T$ is ***invertible*** if and only if there exists an unique left inverse $B$ and an unique right inverse $C$. Moreover, $B=C$. * Proof: > ($\Leftarrow$) True by definition. > > ($\Rightarrow$) > Let $T:V\to W$ be an invertible linear transformation, then $\exists B$ and $C$ such that $B\circ T = I_v$ and $T\circ C = I_w$. > Given ${\bf w}\in W$, > $$ > B({\bf w}) = B(T(C({\bf w}))) = (B\circ T)(C({\bf w})) = C({\bf w}). > $$ > Therefore $B=C$. > > Suppose $\exists B_2:W\to V$ such that $B_2\circ T = I_v$, then, given ${\bf w}\in W$, > $$ > B_2({\bf w}) = B_2(T(C({\bf w}))) = (B_2\circ T)(C({\bf w})) = C({\bf w}). > $$ > Therefore $B_2=C=B$. So the left inverse is unique. > > Similarly, the right inverse is unique. **Corollary:** $T:V\to W$ is an invertible linear transformation if and only if $\exists T^{-1}:W\to V$ such that $T^{-1}\circ T = I_v$ and $T\circ T^{-1}=I_w$. **Corollary:** Let $A:V\to W$ and $B:U\to V$ be invertible linear transformations, then $A\circ B:U\to W$ is an invertible linear transformation and $(A\circ B)^{-1}=B^{-1}\circ A^{-1}$. * Proof: > $$ > (A\circ B)\circ (B^{-1}\circ A^{-1}) = A\circ(B\circ B^{-1})\circ A^{-1} = A\circ I_v\circ A^{-1}=I_w. > $$ > and > $$ > (B^{-1}\circ A^{-1})\circ (A\circ B) = B^{-1}\circ(A^{-1}\circ A)\circ B = B^{-1}\circ I_v\circ B=I_u. > $$ --- ### Invertibility and solvability **Theorem:** Let $T:V\to W$ be a linear transformation, $T$ is invertible if and only if $\forall b\in W$, the equation $T(x)=b$ has an unique solution. * Proof: > ($\Rightarrow$) > $T$ is invertible, so $\exists T^{-1}:W\to V$ that is linear. > Given $b\in W$, define $x=T^{-1}(b)$, then > $$ > T(x) = T(T^{-1}(b))=(T\circ T^{-1})(b) = b. > $$ > > To check uniqueness, suppose $\exists x_2\in V$ such that $T(x_2)=b$, then > $$ > x_2 = (T^{-1}\circ T)(x_2) = T^{-1}(T(x_2)) = T^{-1}(b) = x. > $$ > Therefore, the solution is unique. > > ($\Leftarrow$) > We define a function $B:W\to V$ such that > $$ > B(b)=x, \quad \text{if}\,\, T(x)=b. > $$ > This function $B$ is well-defined since for any $b\in W$, $\exists ! x\in V$ such that $T(x)=b.$ > > claim 1: $B\circ T = I_v$ > > pf: > > Let $x\in V$ and $T(x)=b\in W$. > > Since $T(x)=b$ has only one solution, therefore $B(b)=x$. > > Then we have > > $$ > > B(T(x)) = B(b) = x. > > $$ > > claim 2: $T\circ B = I_w$ > > pf: > > Let $b\in W$, $\exists ! x\in V$ such that $T(x)=b$, hence $B(b)=x$, and > > $$ > > T(B(b)) = T(x) = b. > > $$ > > claim 3: $B$ is linear > > pf: > > Given $b_1, b_2\in W$, $\exists ! x_1, x_2$ such that $T(x_1)=b_1$ and $T(x_2)=b_2$. > > Since $T$ is linear and $T\circ B = I_w$, we have > > $$ > > T(\alpha_1 B(b_1) + \alpha_2 B(b_2)) = \alpha_1 T(B(b_1)) + \alpha_2T(B(b_2)) = \alpha_1 b_1 + \alpha_2 b_2. > > $$ > > Therefore, $B(\alpha_1 b_1 + \alpha_2 b_2) = \alpha_1 B(b_1) + \alpha_2 B(b_2)$. ### One-to-one and onto :::info **Definition:** $T:V\to W$ is one-to-one (1-1, injective) if $T({\bf u})=T({\bf v})$ implies ${\bf u}={\bf v}$. ::: **Proposition:** $T:V\to W$ is one-to-one if and only if $\text{Ker}(T)=\{{\bf 0}\}$. * Proof: > ($\Rightarrow$) > $T$ is linear so $T({\bf 0})={\bf 0}$. > Suppose $\exists {\bf v}\in V$ such that $T({\bf v})={\bf 0}$, > since $T$ is one-to-one, we must have ${\bf v} = {\bf 0}$. > > ($\Leftarrow$) > Let ${\bf u, v}\in V$ such that $T({\bf u}) = T({\bf v})$. > Since $T$ is linear > $$ > {\bf 0} = T({\bf u}) - T({\bf v}) = T({\bf u} - {\bf v}). > $$ > So $({\bf u} - {\bf v})\in\text{Ker}(T)$ and we must have ${\bf u} - {\bf v}={\bf 0}$, that is, ${\bf u} = {\bf v}$. **Proposition:** If $T:V\to W$ is left invertible, then $T$ is one-to-one. * Proof: > Given ${\bf u, v}\in V$ such that $T({\bf u})=T({\bf v})$. > $T$ is left invertible, so $\exists B:W\to V$ such that $B\circ T=I_v$. > Then > $$ > {\bf u} = B(T({\bf u})) = B(T({\bf v})) = {\bf v}. > $$ **Proposition:** If $T:V\to W$ is not one-to-one, $T$ is not left invertible. :::info **Definition:** $T:V\to W$ is onto (surjective) if for any ${\bf w}\in W$, there exists a ${\bf v}\in V$ such that $T({\bf v})={\bf w}$. ::: **Proposition:** If $T:V\to W$ is right invertible, then $T$ is onto. * Proof: > Since $T$ is right invertible, $\exists C:W\to V$ such that $T\circ C=I_w$. > Given ${\bf w}\in W$, we define ${\bf v} = C({\bf w})$, > Therefore $T({\bf v}) = T(C({\bf w})) = {\bf w}$. **Proposition:** If $T:V\to W$ is not onto, $T$ is not right invertible. **Theorem:** Let $T:V\to W$ be a linear transformation, $T$ is invertible if and only if $T$ is one-to-one and onto. * Proof: > ($\Rightarrow$) > Given $T\in\mathcal{L}(V, W)$ that is invertible, then $\exists T^{-1}\in\mathcal{L}(W, V)$. > > claim: $T$ is one-to-one > > pf: > > Suppose there exists ${\bf v}\in V$ such that $T({\bf v})={\bf 0}$. > > Since $T^{-1}$ is linear that maps ${\bf 0}$ to ${\bf 0}$, we have > > $$ > > {\bf v} = T^{-1}(T({\bf v})) = T^{-1}({\bf 0}) = {\bf 0}. > > $$ > > Therefore, $\text{Ker}(T) = \{{\bf 0}\}$ and $T$ is one-to-one. > > claim: $T$ is onto > > pf: > > Given ${\bf w}\in W$, we have ${\bf w} = T(T^{-1}({\bf w}))$, that is, ${\bf w}\in \text{Ran}(T)$. > > It is then clear that $\text{Ran}(T) = W$ and $T$ is onto. > > ($\Leftarrow$) >$T$ is onto, so, for each ${\bf w}\in W$, $\exists {\bf v}\in V$ such that $T({\bf v}) = {\bf w}$. > We then define a function $S:W\to V$ by setting $S({\bf w})={\bf v}$. > > claim: $S$ is a right inverse of $T$ > > pf: > > Given ${\bf w}\in W$, let $S({\bf w}) = {\bf u}$, then $T({\bf u})={\bf w}$ and > > $$ > > (T\circ S)({\bf w}) = T(S({\bf w})) = T({\bf u}) = {\bf w}. > > $$ > > claim: $S$ is a left inverse of $T$ > > pf: > > Given ${\bf v}\in V$, let $T({\bf v})={\bf w}$, and assume $S({\bf w})={\bf u}$, i.e., $T({\bf u})={\bf w}$. > > Since $T$ is one-to-one, we must have ${\bf v}={\bf u}$ and therefore > > $$ > > (S\circ T)({\bf v}) = S(T({\bf v})) = S({\bf w}) = {\bf u}= {\bf v}. > > $$ > > claim: $S$ is a linear transformation > > pf: > > Given ${\bf w}_1, {\bf w}_2\in W$ and $\alpha_1, \alpha_2\in F$, since $T$ is linear and $T\circ S = I_w$, we have > > $$ > > T(\alpha_1 S({\bf w}_1) + \alpha_2 S({\bf w}_2)) = \alpha_1T(S({\bf w}_1)) + \alpha_2T(S({\bf w}_2)) ] =\alpha_1{\bf w}_1 + \alpha_2{\bf w}_2. > > $$ > > Since $T$ is one-to-one, we must have > > $$ > > S(\alpha_1{\bf w}_1 + \alpha_2{\bf w}_2) = \alpha_1 S({\bf w}_1) + \alpha_2 S({\bf w}_2). > > $$ > > So $S$ is a linear transformation. --- ### Examples #### Example 1 Let $T\in\mathcal{L}(\mathbb{P}_2, \mathbb{P}_2)$ with $T(p) = p'+p$. Choose $\beta = \{1, x, x^2\}$ be a basis for $\mathbb{P}_2$. We have $$ \begin{aligned} T(1) = 1 &= \begin{bmatrix} 1 & x & x^2 \end{bmatrix}\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},\\ T(x) = 1+x &= \begin{bmatrix} 1 & x & x^2 \end{bmatrix}\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix},\\ T(x^2) = 2x + x^2 &= \begin{bmatrix} 1 & x & x^2 \end{bmatrix}\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}. \end{aligned} $$ So, the matrix representation of $T$ is $$ [T]_{\beta} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}. $$ It is then easy to find that $$ [T^{-1}]_{\beta} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}. $$ Therefore, $$ \begin{aligned} T^{-1}(a + bx + cx^2) &= T^{-1}\left(\begin{bmatrix} 1 & x & x^2 \end{bmatrix}\begin{bmatrix} a \\ b \\ c \end{bmatrix}\right)\\ &= \begin{bmatrix} 1 & x & x^2 \end{bmatrix}\begin{bmatrix} a-b+2c \\ b-2c \\ c \end{bmatrix} \\ &= (a-b+2c) + (b-2c)x + cx^2. \end{aligned} $$ We can also determine the adjoint transformation of $T$, we have $$ [T^*]_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}. $$ Hence, $$ \begin{aligned} T^*(a + bx + cx^2) &= T^*\left(\begin{bmatrix} 1 & x & x^2 \end{bmatrix}\begin{bmatrix} a \\ b \\ c \end{bmatrix}\right)\\ &= \begin{bmatrix} 1 & x & x^2 \end{bmatrix}\begin{bmatrix} a \\ a+b \\ 2b+cc \end{bmatrix} \\ &= a + (a+b)x + (2b+c)x^2. \end{aligned} $$ We can also use a different basis for $\mathbb{P}_2$. For example, choose $\gamma = \{1+x+x^2, x+x^2, x^2\}$. The matrix representation of $T$ is then $$ [T]^{\gamma}_{\beta} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 0 & -1 & -1 \end{bmatrix}, $$ and $$ [T^{-1}]_{\gamma}^{\beta} = \begin{bmatrix} 2 & 1 & 2 \\ -1 & -1 & -2 \\ 1 & 1 & 1 \end{bmatrix}. $$ We again have $$ \begin{aligned} T^{-1}(a + bx + cx^2) &= T^{-1}\left(\begin{bmatrix} 1+x+x^2 & x+x^2 & x^2 \end{bmatrix}\begin{bmatrix} a \\ b-a \\ c-b \end{bmatrix}\right)\\ &= \begin{bmatrix} 1 & x & x^2 \end{bmatrix}\begin{bmatrix} a-b+2c \\ b-2c \\ c \end{bmatrix} \\ &= (a-b+2c) + (b-2c)x + cx^2. \end{aligned} $$ #### Example 2 Let $T\in\mathcal{L}(\mathbb{P}_2, \mathbb{P}_2)$ with $T(p) = p'$. It is easy to check that $1\in\text{Ker}(T)$, so $T$ is not one-to-one, thus is not left invertible and is not invertible. Also, $x^2\notin\text{Ran}(T)$, so $T$ is not onto and is thus not right invertible. #### Example 3 Let $T\in\mathcal{L}(\mathbb{P}_2, \mathbb{P}_1)$ with $T(p) = p'$. Again, $1\in\text{Ker}(T)$, so $T$ is not one-to-one, thus is not left invertible and is not invertible. But $T$ is onto, and we can define $C\in\mathcal{L}(\mathbb{P}_1, \mathbb{P}_2)$ with $C(p)=\int^x_0p(s)\,dx$. One can check easily that $T\circ C(p) = p$, $\forall p\in\mathbb{P}_1$. #### Example 4 Let $T\in\mathcal{L}(V, V)$ with $T(p) = p'$, where $\beta = \{\sin(x), \cos(x)\}$ is a basis of $V$. Then $T$ is on-to-one and onto, and invertible.