--- title: Ch1-4_5 tags: Linear algebra GA: G-77TT93X4N1 --- # Chapter 1 extra note 4_5 > Linear transformation as a vector space > Composition of linear transformation > Trace of a square matrix ## Selected lecture notes: ### Linear transformation as a vector space **Definition:** $\mathcal{L}(V, W)$: A set containing all the linear transformation from $V$ to $W$. **Proposition:** $\mathcal{L}(V, W)$ is a vector space. * Proof: > Given $T_1, T_2\in\mathcal{L}$, then $T_1:V\to W$ and $T_2:V\to W$ are linear transformations. > Define $T:V\to W$ as $T(x) = c_1 T_1(x) + c_2 T_2(x)$, $c_1, c_2\in F$. > claim: $T$ is linear. > > Given $x, y\in V$ and $\alpha, \beta\in F$, > > $$ > > \begin{aligned} > > T(\alpha x + \beta y) &= c_1 T_1(\alpha x + \beta y) + c_2 T_2(\alpha x + \beta y) \\ > > &= \alpha\left(c_1T_1(x) + c_2T_2(x)\right) + \beta\left(c_1T_1(y) + c_2T_2(y)\right) \\ > > &= \alpha T(x) + \beta T(y). > > \end{aligned} > > $$ > > So $T$ is linear. #### Examples Let $V = \mathbb{P}_n$, then $T_1(p) = p'$, $T_2(p)=p''$, $T_3(p)=p'''$ are all belonging to $\mathcal{L}(V,V)$, and so $$ T(p) = p' + 2p'' + 3p''' $$ is a linear transformation. ### Composition **Definition:** Let $T_1:V\to W$ and $T_2:U\to V$, we define $$ (T_1\circ T_2) (x) = T_1(T_2(x)). $$ **Proposition:** If $T_1$ and $T_2$ are linear transformation, $T_1\circ T_2$ is a linear transformation. * Proof: > $$ > \begin{aligned} > T_1(T_2(\alpha x+ \beta y)) &= T_1(\alpha T_2(x)+ \beta T_2(y))\\ > &= \alpha T_1(T_2(x)) + \beta T_1(T_2(y)). > \end{aligned} > $$ ### Matrix presentation of composition **Proposition:** Let $A = [T_1]^{\gamma}_{\beta}$ and $B = [T_2]^{\beta}_{\mu}$, and assume $T=T_1\circ T_2$, then $[T]^{\gamma}_{\mu} = AB$. **Properties of matrix multiplication:** 1. $A(BC) = (AB)C = ABC$ 2. $A(B+C)=AB+AC$ 3. $A(\alpha B) = (\alpha A)B = \alpha(AB) = \alpha AB$ **Properties of composition of linear transformations:** 1. $T_1\circ (T_2\circ T_3) = (T_1\circ T_2)\circ T_3 = T_1\circ T_2\circ T_3$ 2. $T_1\circ (T_2+ T_3) = T_1\circ T_2 + T_1\circ T_3$ 3. $T_1\circ (\alpha T_2) = (\alpha T_1)\circ T_2 = \alpha (T_1\circ T_2) = \alpha T_1\circ T_2$ ### Trace **Definition:** Let $A$ be a square $n\times n$ matrix, $\text{trace}(A) = \sum^n_{j=1} a_{jj}$. **Theorem:** Let $A\in \mathbb{M}_{m\times n}$ and $B\in \mathbb{M}_{n\times m}$, then $$ \text{trace}(AB) = \text{trace}(BA). $$ * Proof: > Lat $L = AB$. By direct computation, we found that its diagonal element > $$ > \ell_{kk} = \sum^n_{i=1} a_{ki}b_{ik}. > $$ > Therefore > $$ > \text{trace}(AB) = \sum^m_{k=1}\sum^n_{i=1} a_{ki}b_{ik}. > $$ > Similarly, > $$ > \text{trace}(BA) = \sum^n_{k=1}\sum^m_{i=1} b_{ki}a_{ik}. > $$ > Since we can switch double finite sums, we have > $$ > \sum^m_{k=1}\sum^n_{i=1} a_{ki}b_{ik} = \sum^n_{i=1}\sum^m_{k=1} b_{ik}a_{ki}=\sum^n_{k=1}\sum^m_{i=1} b_{ki}a_{ik}. > $$ > So $\text{trace}(AB) = \text{trace}(BA)$. * Proof: (version 2) > Consider the following two linear transformations > $$ > \begin{aligned} > T_1:\mathbb{M}_{n\times m}\to \mathbb{R},& \quad T_1(X) = \text{trace}(AX),\\ > T_2:\mathbb{M}_{m\times n}\to \mathbb{R},& \quad T_2(X) = \text{trace}(XA). > \end{aligned} > $$ > Claim: $T_1(X)=T_2(X)$. > > Proof: > > Let $E_{ij}\in\mathbb{M}_{n\times m}$ be a matrix that has its element being zero except at the $j$-th column $i$-th row. Then $\{E_{ij}, 1\le i\le n, 1\le j\le m\}$ forms a basis for $\mathbb{M}_{n\times m}$. > > It is then easy to verify that, $\forall k, \ell$ we have > > $$ > > T_1(E_{k\ell}) = a_{\ell k} = T_2(E_{k\ell}). > > $$ > > Since $T_1=T_2$ at all the basis vectors, it is also true for any linear combination of basis vectors. So $T_1=T_2$. > > Finally, $T_1(B)=T_2(B)$ leads to $\text{trace}(AB) = \text{trace}(BA)$. <!-- ### Adjoint linear transformation **Definition:** Let $T:V\to W$ be linear, $\beta$ and $\gamma$ be the bases of $V$ and $W$, respectively. We define $T^*:W\to V$, the adjoint transformation of $T$, by setting $$ [T^*]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^T, $$ where the superscript denotes matrix transpose. **Proposition:** $T^*$ is a linear transformation.