Chapter 1 extra note 3

Linear transformation
Matrix representation of a linear transformation
Range
kernel

Youtube

Selected lecture notes:

Linear transformation

Definition

Let

V,
W
be vector spaces over the same field
F
. The map
T:VW
is a linear transformation if

  1. T(u+v)=T(u)+T(v),u,vV
    .
  2. T(αv)=αT(v),αF,vV
    .

Or equivalently,

T(αu+βv)=αT(u)+βT(v),α,βF,u,vV.

Lemma:

Let

T:VW be a linear transformation, then
T(0)=0
.

  • Proof:

    Let

    uV, then
    T(0)=T(0u)=0T(u)=0.

Examples of linear transformation

  • T:P2(x)P1(x)
    with
    T(p)=ddxp(x)
    .
  • T:Pn(x)Pn+1(x)
    with
    T(p)=0xp(s)ds
    .
  • T:P3(x)P3(x)
    with
    T(p)=ddxp(x)
    .
    • a) Let
      β={1,x,x2,x3}
      be a basis of
      P3(x)
      . For any
      vP3(x)
      , we have
      v=α01+α1x+α2x2+α3x3.

      Also, we have
      (2)T(v)=α0T(1)+α1T(x)+α2T(x2)+α3T(x3),

      and notice that
      T(1)=0=01+0x+0x2+0x3=[1xx2x3][0000],T(x)=1=[1xx2x3][1000],T(x2)=2x=[1xx2x3][0200],T(x3)=3x2=[1xx2x3][0030].

      We can then rewrite (2) as
      T(v)=[1xx2x3](α0[0000]+α1[1000]+α2[0200]+α3[0030])=[1xx2x3][0100002000030000][α0α1α2α3]=[1xx2x3][α12α23α30]=α1+(2α2)x+(3α3)x2+0x3.

      Therefore, given coordinates of
      v
      ,
      (α1,,α4)
      , it is clear that the following matrix-vector multiplication gives the coordinates of
      T(v)
      :
      [0100002000030000][α0α1α2α3].
    • b) Let
      γ={1,2x,3x2,4x3}
      be another basis of
      P3(x)
      , and we now write
      T(v)
      in the basis
      γ
      . We have
      T(1)=0=[12x3x24x3][0000],T(x)=1=[12x3x24x3][1000],T(x2)=2x=[12x3x24x3][0100],T(x3)=3x2=[12x3x24x3][0010],

      and the matrix representation of
      T(v)
      is
      [0100001000010000][α0α1α2α3].

Matrix representation of a linear transformation

Definition:
Let

β=v1,,vn be a basis of
V
and
γ=w1,,wm
be a basis of
W
, and let
T:VW
be a linear transformation. Then, for each
j
with
1jn
, there exists
{aij,1im}
such that
T(vj)=i=1maijwi.

The
m×n
matrix
[aij]
is called the matrix representation of
T
in basis
β
and
γ
, and is denoted by
[T]βγ
.

If

T:VV with the same basis
β
, the matrix representation is denoted by
[T]β
.

Examples of the matrix representation

  • T:P3(x)P3(x)
    with
    T(p)=ddxp(x)
    .
    • β={1,x,x2,x3}
      and
      γ={1,2x,3x2,4x3}
      .
      [T]β=[0100002000030000],[T]βγ=[0100001000010000].
  • T:P2(x)P2(x)
    with
    T(p)=p3p+3p
    .
    • β={1,x,x2}
      .
      • First approach - We calculate the coefficients of
        T(1)
        ,
        T(x)
        and
        T(x2)
        to have
        [T]β=[332036003].
      • Second approach - Let's define two linear transformations,
        D:P2(x)P2(x)
        with
        D(p)=p
        and
        I:P2(x)P2(x)
        with
        I(p)=p
        . It is then clear that
        T=DD3D+3I.

        The matrix of
        D
        and
        I
        are
        [D]β=[010002000],[I]β=[100010001],

        therefore
        [T]β=D23D+3I=[332036003].

Range and kernel

Definition:
Given

T:VW be a linear transformation.

  • The range of
    T
    is defined as
    range(T)={wW|T(v)=w,vV}.
    • Other names:
      range(T)=Ran(T)=image(T)=Im(T).
  • The kernel of
    T
    is defined as
    kernel(T)={vV|T(v)=0}.
    • Other names:
      kernel(T)=Ker(T)=null(T)=N(T).