--- title: Assignments 3 tags: Linear algebra GA: G-77TT93X4N1 --- # Assignments 3 1. Exercise 1.5 at p.124. 2. Suppose $V$ is a vector space, $W$ is an inner product space and $T:V\to W$ is linear and injective. For $v_1, v_2\in V$, define $$ \langle v_1, v_2\rangle:=\langle Tv_1, Tv_2\rangle, $$ where the right-hand side involves the given inner product on $W$. Prove that this defines an inner product on $V$. 3. Show that $$ \left(a_1b_1+a_2b_2+\cdots+a_nb_n\right)^2\leq \left(a^2_1+2a^2_2+\cdots+na^2_n\right) \left(b^2_1+\frac{b^2_2}{2}+\cdots+\frac{b^2_n}{n}\right), $$ for all $a_1,\cdots,a_n$, $b_1,\cdots,b_n\in\mathbb{R}$, $n\in\mathbb{N}$. 4. Exercise 1.8( c) at p.125. 5. (The problem number is the last digit of your student ID number) * Use ChatGPT to find the **correct answer** for your assigned problem. * [Problems](https://drive.google.com/file/d/1mlckS9VNyJA7RoZJdcJFb5wPV4XrYg6h/view?usp=sharing). # TA solution * [Assignment3_solution](https://drive.google.com/file/d/1BjWiGQnCRXk8srua2K8FbUroGex1QsNt/view?usp=sharing)