Try   HackMD

Linear Algebra Note 7

Eigenvectors & Eigenvalues (2021.12.22 ~ 2021.12.29)

Singular Value Decomposition (SVD)

  • Theorem

    Am×n=Um×mΣm×nVn×n
    where
    U
    and
    V
    are orthogonal matrix (orthogonal columns)
    U1=UT,V1=VT

    Σ=[σ1σ2σr00]m×n, σ= singular value, r=rank(A)min(m, n)

    AV=UΣVTV=UΣAV1=σ1u1, AV2=σ2u2, , AVr=σrur

    • Proof
      Consider
      ATA
      , an
      n×n
      symmetric matrix
      ATA
      is diagonalizable
      Moreover, from spectral theorem
      ATA=QΛQT
      , the eigenvectors are orthonormal
      Let
      v1, v2, , vn
      be orthonormal eigenvectors of
      ATA

      ATAvi=λiviAvi2=viTATAvi=viTλivi=λiviTvi1=λi0

      rank(ATA)=rank(A)=r=
      the number of non-zero eigenvalues for
      ATA

      Let
      λ1λ2λr, σiλi

      For
      i=1, 2, , r
      , define
      uiAviAvi=Aviσi

      uiTuj=(viTATσi)(Avjσj)=viT(ATAvj)σiσj={Avj2σj2=σj2σj2=1, i=jviTλjvjσiσj=0, ij{u1, u2, , ur} is orthonormal

      Since each
      ui
      is
      m×1
      , we can use the Gram-Schimdt process to extend this to an orthonormal basis
      {u1, u2, , ur, ur+1, , um}

      For ① ②,
      Avi=σiui
      for
      i=1, 2, , r
      and
      Avi=0ui=0

      A[v1v2vrvr+1vn]=[u1u2urvu+1un][σ1σ2σr00]AV=UΣ where U, V are orthogonalA=Um×mΣm×nVn×nT=Um×rΣr×rVr×nT
    • Example
      A=[220110], ATA=[212100][220110]=[530350000]ATAλI=[5λ3035λ000λ]solve |ATAλI|λ1=8, λ2=2, λ3=0, x1=[110], x2=[110], x3=[001]v1=x1x1=12[110], v2=x2x2=12[110], v3=x3x3=[001]σ1=λ1=8, σ2=λ2=2, σ3=λ3=0u1=Av1σ1=[220110]12[110]18=14[40]=[10]u2=Av2σ2=[220110]12[110]12=12[02]=[01]A=UΣVT=[1001][800020][1212012120001]
  • If

    M is symmetric,
    i.e. MT=M
    ,
    {σi}
    is the absolute value of
    M
    's eigenvalues
    M=UΣVTMMT=(UΣVT)(VΣTUT)=UΣ2UT where U is orthogonal

    Recall (EVD: Matrix diagonalization):
    A=SΛS1

    MMT=UΣ2UTΣ2 contains the eigenvalues of MMTΣ has Ms absolute eigenvalues

  • If

    A is positive semidefinite,
    {σi}
    is the eigenvalues of
    A
    , i.e. SVD reduces to EVD

  • Consider SVD of

    AAT, A=UΣVT=EV(AAT)×λi×EV(ATA)
    AAT=(UΣVT)(VΣTUT)=UΣΣTUT

    where
    ΣΣT=[σ12σ22σr200]=[λ1λ2λr00]

    AAT=UΣΣTUT
    is the EVD of
    AAT
    where
    ΣΣT
    contains eigenvalues of
    AAT
    and
    u1, u2, , um
    are eigenvectors
    Note that
    {λ1, λ2, , λr, 0, , 0n-r}
    are the eigenvalues of
    ATA
    with corresponding eigenvectors
    {v1, v2, , vn}

  • Example (Solving Fibonacci Numbers)

    Fk+2=Fk+1+Fk, for k=0, 1, 2,
    Let
    uk=[Fk+1Fk]

    uk+1=[Fk+2Fk+1]=[Fk+1+FkFk+1]=[1110][Fk+1Fk]=[1110]uk

    uk+1=Auk
    where
    A=[1110]uk+1=Aku0

    Find the general form for
    Fk

    A=[1110]
    has eigenvalues obtained by solving
    |AλI|=0

    |AλI|=|[1λ11λ]|=λ2λ1=0λ1=1+52, λ2=152,x1=[1+521]=[λ11], x2=[1521]=[λ21]

    A=SΛS1 where S=[λ1λ211], S1=1λ1λ2[1λ21λ1]Λ=[λ100λ2], Ak=AΛkS1, Λk=[λ1k00λ2k]uk+1=Aku0=[λ1λ211][λ1k00λ2k]1λ1λ2[1λ21λ1][10]=1λ1λ2[λ1λ211][λ1k00λ2k][11]=1λ1λ2[λ1λ211][λ1kλ2k]=1λ1λ2[λ1k+1λ2k+1λ1kλ2k]=[Fk+1Fk]Fk=λ1kλ2kλ1λ2=λ1kλ2k5

    As
    k

    limkFk+1Fk=limkλ1k+1λ2k+1λ1kλ2k=limk(λ1λ2)(λ1k++λ2k)(λ1λ2)(λ1k1++λ2k1)=limkλ1kλ1k1 (  |λ1|>1, |λ2|<1 )=λ1=1+52 (Golden ratio)

  • The matrices

    U and
    V
    contain orthonormal bases for all four subspaces:
    first r columns of V:C(AT)last nr columns of V:N(A)first r columns of U:C(A)last mr columns of U:N(AT)

    Note that
    ATAvi=λivi for i=1, , r ATAviλi=vi

    Let yi=AviλiATyi=viviC(AT), dim(C(AT))=r

     {v1, v2, , vr}
    is a set of orthonormal vectors
    {v1, v2, , vr}
    is a set of orthonormal basis of
    C(AT)

    when
    (r+1)in, ATAvi=0{vr+1, , vn}
    are
    nr
    orthonormal vectors
     N(A)
    has dimension
    nr{vr+1, , vn}
    is a set of orthonormal basis of
    N(A)

    Avi=σiui for i=1, , r Avisigmai=ui

    Let xi=visigmaiAxi=uiuiC(A)

    {u1, u2, , ur}
    is a set of orthonormal basis of
    C(A)

    when
    (r+1)im, {ur+1, , um}
    is a set of orthonormal basis of
    N(AT)