--- title: Linear Algebra Note 7 tags: Linear Algebra, 線性代數, 魏群樹, 大學, 國立陽明交通大學, 筆記 --- # Linear Algebra Note 7 ## Eigenvectors & Eigenvalues (2021.12.22 ~ 2021.12.29) ### Singular Value Decomposition (SVD) - Theorem $A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}$ where $U$ and $V$ are orthogonal matrix (orthogonal columns) $\implies U^{-1} = U^T, V^{-1} = V^T$ $\Sigma = \left[\begin{array}{c c c c c c c} \sigma_1 & & & & & & \\ & \sigma_2 & & & & & \\ & & \ddots & & & & \\ & & & \sigma_r & & & \\ & & & & 0 & & \\ & & & & & \ddots & \\ & & & & & & 0 \\ \end{array}\right]_{m \times n},\ \sigma = \text{ singular value},\ r = rank(A) \le min(m,\ n)$ $AV = U\Sigma V^TV = U\Sigma \\ A\vec{V_1} = \sigma_1\vec{u_1},\ A\vec{V_2} = \sigma_2\vec{u_2},\ \cdots,\ A\vec{V_r} = \sigma_r\vec{u_r}$ - Proof Consider $A^TA$ , an $n \times n$ symmetric matrix $\implies A^TA$ is diagonalizable Moreover, from spectral theorem $A^TA = Q\Lambda Q^T$ , the eigenvectors are orthonormal Let $\vec{v_1},\ \vec{v_2},\ \cdots,\ \vec{v_n}$ be orthonormal eigenvectors of $A^TA$ $A^TA\vec{v_i} = \lambda_i\vec{v_i} \\ \begin{Vmatrix} A\vec{v_i} \end{Vmatrix}^2 = \vec{v_i}^TA^TA\vec{v_i} = \vec{v_i}^T\lambda_i\vec{v_i} = \lambda_i\underbrace{\vec{v_i}^T\vec{v_i}}_1 = \lambda_i \ge 0$ $rank(A^TA) = rank(A) = r =$ the number of non-zero eigenvalues for $A^TA$ Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_r,\ \sigma_i \triangleq \sqrt{\lambda_i}$ For $i=1,\ 2,\ \cdots,\ r$ , define $\vec{u_i} \triangleq {A\vec{v_i} \over \begin{Vmatrix} A\vec{v_i} \end{Vmatrix}} = {A\vec{v_i} \over \sigma_i}\cdots ①$ $\vec{u_i}^T\vec{u_j} = ({\vec{v_i}^TA^T \over \sigma_i})({A\vec{v_j} \over \sigma_j}) = {\vec{v_i}^T(A^TA\vec{v_j}) \over \sigma_i\sigma_j} = \left\{\begin{array}{c} {\begin{Vmatrix} A\vec{v_j} \end{Vmatrix}^2 \over \sigma_j^2} = {\sigma_j^2 \over \sigma_j^2} = 1,\ i = j \\ {\vec{v_i}^T\lambda_j\vec{v_j} \over \sigma_i\sigma_j} = 0,\ i \not= j \\ \end{array}\right. \\ \therefore \{ \vec{u_1},\ \vec{u_2},\ \cdots,\ \vec{u_r} \} \text{ is orthonormal}$ Since each $\vec{u_i}$ is $m \times 1$ , we can use the Gram-Schimdt process to extend this to an orthonormal basis $\{ \vec{u_1},\ \vec{u_2},\ \cdots,\ \vec{u_r},\ \vec{u_{r+1}},\ \cdots,\ \vec{u_m} \} \cdots ②$ For ① ②, $A\vec{v_i} = \sigma_i\vec{u_i}$ for $i = 1,\ 2,\ \cdots,\ r$ and $A\vec{v_i} = 0\vec{u_i} = 0$ $A\left[\begin{array}{c c c c c c c} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_r} & \vec{v_{r+1}} & \cdots & \vec{v_n} \\ \end{array}\right] = \left[\begin{array}{c c c c c c c} \vec{u_1} & \vec{u_2} & \cdots & \vec{u_r} & \vec{v_{u+1}} & \cdots & \vec{u_n} \\ \end{array}\right]\left[\begin{array}{c c c c c c c} \sigma_1 & & & & & & \\ & \sigma_2 & & & & & \\ & & \ddots & & & & \\ & & & \sigma_r & & & \\ & & & & 0 & & \\ & & & & & \ddots & \\ & & & & & & 0 \\ \end{array}\right] \\ \therefore AV=U\Sigma \text{ where } U,\ V \text{ are orthogonal} \\ \therefore A = U_{m \times m}\Sigma_{m \times n}V^T_{n \times n} = U'_{m \times r}\Sigma_{r \times r}^{'}V'^T_{r \times n}$ - Example $A = \left[\begin{array}{c c c} 2 & 2 & 0 \\ -1 & 1 & 0 \\ \end{array}\right],\ A^TA = \left[\begin{array}{c c} 2 & -1 \\ 2 & 1 \\ 0 & 0 \\ \end{array}\right]\left[\begin{array}{c c c} 2 & 2 & 0 \\ -1 & 1 & 0 \\ \end{array}\right] = \left[\begin{array}{c c c} 5 & 3 & 0 \\ 3 & 5 & 0 \\ 0 & 0 & 0 \\ \end{array}\right] \\ A^TA - \lambda I = \left[\begin{array}{c c c} 5-\lambda & 3 & 0 \\ 3 & 5-\lambda & 0 \\ 0 & 0 & -\lambda \\ \end{array}\right] \\ solve\ \begin{vmatrix} A^TA - \lambda I \end{vmatrix} \implies \lambda_1 = 8,\ \lambda_2 = 2,\ \lambda_3 = 0,\ \vec{x_1} = \left[\begin{array}{c} 1 \\ 1 \\ 0 \\ \end{array}\right],\ \vec{x_2} = \left[\begin{array}{c} 1 \\ -1 \\ 0 \\ \end{array}\right],\ \vec{x_3} = \left[\begin{array}{c} 0 \\ 0 \\ 1 \\ \end{array}\right] \\ \therefore \vec{v_1} = {\vec{x_1} \over \begin{Vmatrix} \vec{x_1} \end{Vmatrix}} = {1 \over \sqrt{2}}\left[\begin{array}{c} 1 \\ 1 \\ 0 \\ \end{array}\right],\ \vec{v_2} = {\vec{x_2} \over \begin{Vmatrix} \vec{x_2} \end{Vmatrix}} = {1 \over \sqrt{2}}\left[\begin{array}{c} 1 \\ -1 \\ 0 \\ \end{array}\right],\ \vec{v_3} = {\vec{x_3} \over \begin{Vmatrix} \vec{x_3} \end{Vmatrix}} = \left[\begin{array}{c} 0 \\ 0 \\ 1 \\ \end{array}\right] \\ \sigma_1 = \sqrt{\lambda_1} = \sqrt{8},\ \sigma_2 = \sqrt{\lambda_2} = \sqrt{2},\ \sigma_3 = \sqrt{\lambda_3} = 0 \\ \vec{u_1} = {A\vec{v_1} \over \sigma_1} = \left[\begin{array}{c c c} 2 & 2 & 0 \\ -1 & 1 & 0 \\ \end{array}\right]{1 \over \sqrt{2}}\left[\begin{array}{c} 1 \\ 1 \\ 0 \\ \end{array}\right]{1 \over \sqrt{8}} = {1 \over 4}\left[\begin{array}{c} 4 \\ 0 \\ \end{array}\right] = \left[\begin{array}{c} 1 \\ 0 \\ \end{array}\right] \\ \vec{u_2} = {A\vec{v_2} \over \sigma_2} = \left[\begin{array}{c c c} 2 & 2 & 0 \\ -1 & 1 & 0 \\ \end{array}\right]{1 \over \sqrt{2}}\left[\begin{array}{c} 1 \\ -1 \\ 0 \\ \end{array}\right]{1 \over \sqrt{2}} = {1 \over 2}\left[\begin{array}{c} 0 \\ -2 \\ \end{array}\right] = \left[\begin{array}{c} 0 \\ -1 \\ \end{array}\right] \\ \therefore A=U\Sigma V^T = \left[\begin{array}{c c} 1 & 0 \\ 0 & -1 \\ \end{array}\right]\left[\begin{array}{c c c} \sqrt{8} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ \end{array}\right]\left[\begin{array}{c c c} {1 \over \sqrt{2}} & {1 \over \sqrt{2}} & 0 \\ {1 \over \sqrt{2}} & {-1 \over \sqrt{2}} & 0 \\ 0 & 0 & 1 \\ \end{array}\right]$ - If $M$ is symmetric, $i.e.\ M^T = M$ , $\{ \sigma_i \}$ is the absolute value of $M$'s eigenvalues $M = U\Sigma V^T \\ MM^T = (U\Sigma V^T)(V\Sigma^TU^T) = U\Sigma^2U^T \text{ where } U \text{ is orthogonal}$ Recall (EVD: Matrix diagonalization): $A = S\Lambda S^{-1}$ $MM^T = U\Sigma^2U^T \implies \Sigma^2 \text{ contains the eigenvalues of } MM^T \implies \Sigma \text{ has } M's \text{ absolute eigenvalues}$ - If $A$ is positive semidefinite, $\{ \sigma_i \}$ is the eigenvalues of $A$, i.e. SVD reduces to EVD - Consider SVD of $AA^T,\ A = U\Sigma V^T = EV(AA^T) \times \sqrt{\lambda_i} \times EV(A^TA)$ $AA^T = (U\Sigma V^T)(V\Sigma^TU^T) = U\Sigma\Sigma^TU^T$ where $\Sigma\Sigma^T = \left[\begin{array}{c c c c c c c} \sigma_1^2 & & & & & & \\ & \sigma_2^2 & & & & & \\ & & \ddots & & & & \\ & & & \sigma_r^2 & & & \\ & & & & 0 & & \\ & & & & & \ddots & \\ & & & & & & 0 \\ \end{array}\right] = \left[\begin{array}{c c c c c c c} \lambda_1 & & & & & & \\ & \lambda_2 & & & & & \\ & & \ddots & & & & \\ & & & \lambda_r & & & \\ & & & & 0 & & \\ & & & & & \ddots & \\ & & & & & & 0 \\ \end{array}\right]$ $\therefore AA^T = U\Sigma\Sigma^TU^T$ is the EVD of $AA^T$ where $\Sigma\Sigma^T$ contains eigenvalues of $AA^T$ and $\vec{u_1},\ \vec{u_2},\ \cdots,\ \vec{u_m}$ are eigenvectors Note that $\{ \lambda_1,\ \lambda_2,\ \cdots,\ \lambda_r,\ \underbrace{0,\ \cdots,\ 0}_\text{n-r} \}$ are the eigenvalues of $A^TA$ with corresponding eigenvectors $\{ \vec{v_1},\ \vec{v_2},\ \cdots,\ \vec{v_n} \}$ - Example (Solving Fibonacci Numbers) $F_{k+2} = F_{k+1} + F_k,\ for\ k=0,\ 1,\ 2, \cdots$ Let $\vec{u_k} = \left[\begin{array}{c} F_{k+1} \\ F_k \\ \end{array}\right]$ $\vec{u_{k+1}} = \left[\begin{array}{c} F_{k+2} \\ F_{k+1} \\ \end{array}\right] = \left[\begin{array}{c} F_{k+1}+F_k \\ F_{k+1} \\ \end{array}\right] = \left[\begin{array}{c c} 1 & 1 \\ 1 & 0 \\ \end{array}\right]\left[\begin{array}{c} F_{k+1} \\ F_k \\ \end{array}\right] = \left[\begin{array}{c c} 1 & 1 \\ 1 & 0 \\ \end{array}\right]\vec{u_k}$ $\vec{u_{k+1}} = A\vec{u_k}$ where $A = \left[\begin{array}{c c} 1 & 1 \\ 1 & 0 \\ \end{array}\right] \implies \vec{u_{k+1}} = A^k\vec{u_0}$ Find the general form for $F_k$ $A = \left[\begin{array}{c c} 1 & 1 \\ 1 & 0 \\ \end{array}\right]$ has eigenvalues obtained by solving $\begin{vmatrix} A-\lambda I \end{vmatrix} = 0$ $\begin{vmatrix} A-\lambda I \end{vmatrix} = \begin{vmatrix} \left[\begin{array}{c c} 1-\lambda & 1 \\ 1 & -\lambda \\ \end{array}\right] \end{vmatrix} = \lambda^2-\lambda-1 = 0 \\ \lambda_1 = {1+\sqrt{5} \over 2},\ \lambda_2 = {1-\sqrt{5} \over 2}, \vec{x_1} = \left[\begin{array}{c} {1+\sqrt{5} \over 2} \\ 1 \\ \end{array}\right] = \left[\begin{array}{c} \lambda_1 \\ 1 \\ \end{array}\right],\ \vec{x_2} = \left[\begin{array}{c} {1-\sqrt{5} \over 2} \\ 1 \\ \end{array}\right] = \left[\begin{array}{c} \lambda_2 \\ 1 \\ \end{array}\right]$ $A = S\Lambda S^{-1} \ where\ S = \left[\begin{array}{c c} \lambda_1 & \lambda_2 \\ 1 & 1 \\ \end{array}\right],\ S^{-1} = {1 \over \lambda_1 - \lambda_2}\left[\begin{array}{c c} 1 & -\lambda_2 \\ -1 & \lambda_1 \\ \end{array}\right] \\ \Lambda = \left[\begin{array}{c c} \lambda_1 & 0 \\ 0 & \lambda_2 \\ \end{array}\right],\ A^k = A\Lambda^kS^{-1},\ \Lambda_k = \left[\begin{array}{c c} \lambda_1^k & 0 \\ 0 & \lambda_2^k \\ \end{array}\right] \\ \begin{split}\vec{u_{k+1}} =& A^k\vec{u_0} \\ =& \left[\begin{array}{c c} \lambda_1 & \lambda_2 \\ 1 & 1 \\ \end{array}\right]\left[\begin{array}{c c} \lambda_1^k & 0 \\ 0 & \lambda_2^k \\ \end{array}\right]{1 \over \lambda_1 - \lambda_2}\left[\begin{array}{c c} 1 & -\lambda_2 \\ -1 & \lambda_1 \\ \end{array}\right]\left[\begin{array}{c} 1 \\ 0 \\ \end{array}\right] \\ =& {1 \over \lambda_1 - \lambda_2}\left[\begin{array}{c c} \lambda_1 & \lambda_2 \\ 1 & 1 \\ \end{array}\right]\left[\begin{array}{c c} \lambda_1^k & 0 \\ 0 & \lambda_2^k \\ \end{array}\right]\left[\begin{array}{c} 1 \\ -1 \\ \end{array}\right] \\ =& {1 \over \lambda_1 - \lambda_2}\left[\begin{array}{c c} \lambda_1 & \lambda_2 \\ 1 & 1 \\ \end{array}\right]\left[\begin{array}{c} \lambda_1^k \\ -\lambda_2^k \\ \end{array}\right] \\ =& {1 \over \lambda_1 - \lambda_2}\left[\begin{array}{c} \lambda_1^{k+1} - \lambda_2^{k+1} \\ \lambda_1^k - \lambda_2^k \\ \end{array}\right] = \left[\begin{array}{c} F_{k+1} \\ F_k \\ \end{array}\right] \\ \implies &F_k = {\lambda_1^k - \lambda_2^k \over \lambda_1 - \lambda_2} = {\lambda_1^k - \lambda_2^k \over \sqrt{5}}\end{split}$ As $k \to \infty$ $\begin{split}\lim\limits_{k\to \infty} {F_{k+1} \over F_k} &= \lim\limits_{k\to \infty} {\lambda_1^{k+1}-\lambda_2^{k+1} \over \lambda_1^k - \lambda_2^k} \\ &= \lim\limits_{k\to \infty} {(\lambda_1 - \lambda_2)(\lambda_1^k+\cdots+\lambda_2^k) \over (\lambda_1 - \lambda_2)(\lambda_1^{k-1}+\cdots+\lambda_2^{k-1})} \\ &= \lim\limits_{k\to \infty} {\lambda_1^k \over \lambda_1^{k-1}}\ (\ \because\ \begin{vmatrix} \lambda_1 \end{vmatrix} > 1,\ \begin{vmatrix} \lambda_2 \end{vmatrix} < 1\ ) \\ &= \lambda_1 = {1+\sqrt{5} \over 2} \text{ (Golden ratio)}\end{split}$ - The matrices $U$ and $V$ contain orthonormal bases for all four subspaces: $$\begin{split}&\text{first } r &\text{ columns of } V: C(A^T) \\ &\text{last } n-r &\text{ columns of } V: N(A) \\ &\text{first } r &\text{ columns of } U: C(A) \\ &\text{last } m-r &\text{ columns of } U: N(A^T)\end{split}$$ Note that $A^TA\vec{v_i} = \lambda_i\vec{v_i}\ for\ i = 1,\ \cdots,\ r\ \implies A^T{A\vec{v_i} \over \lambda_i} = \vec{v_i}$ $\text{Let } \vec{y_i} = {A\vec{v_i} \over \lambda_i} \implies A^T\vec{y_i} = \vec{v_i} \implies \vec{v_i} \in C(A^T),\ dim(C(A^T)) = r$ $\because\ \{ \vec{v_1},\ \vec{v_2},\ \cdots,\ \vec{v_r} \}$ is a set of orthonormal vectors $\implies \{ \vec{v_1},\ \vec{v_2},\ \cdots,\ \vec{v_r} \}$ is a set of orthonormal basis of $C(A^T)$ when $(r+1) \le i \le n,\ A^TA\vec{v_i} = \vec{0} \implies \{ \vec{v_{r+1}},\ \cdots,\ \vec{v_n} \}$ are $n-r$ orthonormal vectors $\because\ N(A)$ has dimension $n-r \implies \{ \vec{v_{r+1}},\ \cdots,\ \vec{v_n} \}$ is a set of orthonormal basis of $N(A)$ $A\vec{v_i} = \sigma_i\vec{u_i}\ for\ i=1,\ \cdots,\ r\ \implies A{\vec{v_i} \over sigma_i} = \vec{u_i}$ $\text{Let } \vec{x_i} = {\vec{v_i} \over sigma_i} \implies A\vec{x_i} = \vec{u_i} \implies \vec{u_i} \in C(A)$ $\{ \vec{u_1},\ \vec{u_2},\ \cdots,\ \vec{u_r} \}$ is a set of orthonormal basis of $C(A)$ when $(r+1) \le i \le m,\ \{ \vec{u_{r+1}},\ \cdots,\ \vec{u_m} \}$ is a set of orthonormal basis of $N(A^T)$