Try   HackMD

Linear Algebra Note 6

Eigenvectors & Eigenvalues (2021.12.08 ~ 2021.12.17)

Eigenvalue Decomposition (EVD) or Matrix Diagonalization

  • Theorem
    Let

    A be a
    n×n
    matrix.
    A
    can be decomposed into
    A=SΛS1
    or
    Λ=S1AS
    (diagonalization)
    where
    Λ=[λ1000λ2000λn]
    with
    λi
    being eigenvalue of
    A
    and
    S=[x1x2xn]
    consists of eigenvectors
    xi
    corresponding to
    λi
    if and only if
    A
    has
    n
    linearly independent eigenvectors

    • Proof
      S=[x1x2xn]AS=[Ax1Ax2Axn]=[λ1x1λ2x2λnxn]=[x1x2xn][λ1000λ2000λn]=SΛ

      S
      is invertible if and only if
      x1, x2, , xn
      are linearly independent
      A=SΛS1
      if and only if
      x1, x2, , xn
      are linearly independent
      The matrix
      A
      is said to be diagonalizable
  • Theorem
    If

    A is diagonalizable,
    Ak=SΛkS1
    where
    Λk=[λ1k000λ2k000λnk]

    • Proof
      A=SΛS1A2=(SΛS1)(SΛS1)=SΛ2S1 where Λ2=[λ12000λ22000λn2]Ak=SΛkS1
    • Example
      A=[0.80.30.20.7], Λ=[λ100λ2]=[1000.5]S=[x1x2]=[0.610.41], S1=[110.40.6]check A=SΛS1=[0.610.41][1000.5][110.40.6]A=SΛS1=[0.610.41][1000.5][110.40.6]=[0.610.41][1000][110.40.6]=[0.600.40][110.40.6]=[0.60.60.40.4]
  • Theorem
    Let

    λ1, λ2, , λn be
    A
    's eigenvalues and
    x1, x2, , xn
    be the corresponding eigenvectors, respectively.
    If all
    λi
    are distinct then
    {x1, x2, , xn}
    are linearly independent, i.e.
    A
    is diagonalizable

    • Proof (using mathematical induction)
      n=1, {x1}
      is linearly independent
      Assume this is true for
      n=k

      i.e. λ1, λ2, , λk
      are distinct and
      {x1, x2, , xk}
      is linearly independent
      consider
      n=k+1
      , let
      λ1, λ2, , λk, λk+1
      are all distinct if
      {x1, x2, , xk, xk+1}
      is not linearly independent
      i.e. c1x1+c2x2++ckxk=xk+1 or c1x1+c2x2++ckxkxk+1=0

      ( Ax=λx(AλI)x=0 )(Aλk+1I)xk+1=0(Aλk+1I)(c1x1+c2x2++ckxk)=0(Ac1x1+Ac2x2++Ackxk)(λk+1c1x1+λk+1c2x2++λk+1ckxk)=0 Ax1=λ1x1, Ax2=λ2x2, , Axk=λkxk(c1λ1x1+c2λ2x2++ckλkxk)(c1λk+1x1+c2λk+1x2++ckλk+1xk)=0i=1kciλixii=1kciλk+1xi=0i=1kci(λiλk+1)xi=0λiλk+1=0λi=λk+1 (NOT all distinct)(contradiction)  {x1, x2, , xk, xk+1} is linearly independent
  • Define(GM): The geometric multiplicity (GM) of an eigenvalue

    λ of
    A
    is the dimension of the eigenspace
    EA(λ) i.e. N(AλI)

  • Define(AM): The algebraic multiplicity (AM) of an eigenvalue

    λ of
    A
    is the number of times
    λ
    appears as a root of
    |AλI|=0

    • Example
      A=[0100]|AλI|=λ20=0, λ2=0AM=2EA(λ=0)=N(AλI)=N(A)={c[10]}GM=dim(EA)=1
  • Theorem
    Let

    A be
    n×n
    matrix with eigenvalues
    λ1, λ2, , λk

    A
    is diagonalizable if and only if

    1. i=1kmi=n, mi=the AM of λi
    2. mi=dim(EA(λi))=GM(i) for i{1, 2, , k}
  • Example

    A=[401232104]|AλI|=|[4λ0123λ2104λ]|=(λ5)(λ3)2GM(1)=EA(λ1=5)=N(A5I)=N([101222101])={c[121]}GM(2)=EA(λ1=3)=N(A3I)=N([101202101])={c1[101]+c2[010]}{λ1=5, AM(1)=1, GM(1)=1λ2=3, AM(2)=2, GM(2)=2A is diagonalizable, i.e.{[121], [101], [010]} are linearly independent

Positive Definite Matrices & Cholesky Factorization

  • Define (Positive definite): A symmetric matrix

    A is positive definite if
    xTAx>0  x0

  • Theorem

    A is positive definite. This is equivalent to the following:

    1. All
      n
      pivots are positive
    2. All
      n
      upper left determinants are positive
    3. All
      n
      eigenvalues are positive
    4. xTAx>0, x0
    5. A=RTR
      where
      R
      has independent columns (Cholesky Factorization)
    • Proof 1 and 4
      For a symmetric
      A
      ,
      A=LDLT
      where
      L=[100101]=[a1a2an]D=[d1000d20000dn], where d1, d2, , dn are pivotsxTAx=xTLDLTx=xT[a1a2an][d1000d20000dn][a1Ta2TanT]x=i=1ndi(xTaiaiTx)=i=1ndi(aiTx)2If di0 for all i=1, 2, , nxTAx0This is 0 only when1. x=02.  x s.t.LTx=0 i.e. xN(LT)However, N(LT)={0} since LT has full rank
    • Proof 5
      A=LDLT
      and
      D=[d1000d20000dn]
      where
      di>0

      Split
      D
      into
      DDT=[d1000d20000dn][d1000d20000dn]

      A=LDDTLT=RTR where R=DTLT=[d1000d20000dn][1010001] has independent columnsA=RTR where R has independent columns
    • Example
      A=[1226]
      , we have shown that 1 and 4
      3. |AλI|=|[1λ226λ]|=λ27λ+2=0λ=7±412>05. A=LDLT=[1021][1002][1201]=RTR where R=[1002][1201]=[1202]

 x0 , A symmetric
A
is

  1. Positive definite if all
    λi>0 (xTAx>0)
  2. Positive semidefinite if all
    λi0 (xTAx0)
  3. Negative definite if all
    λi<0 (xTAx<0)
  4. Negative semidefinite if all
    λi0 (xTAx0)
  5. Indefinite, otherwise
  • Example

    A=[1224], λ1=0, λ2=5, x1=[21], x2=[12]x1Tx2=22=0x1x2

  • Theorem (Spectral Theorem)
    Every symmetric matrix has factorization

    A=QΛQT with
    Q
    is orthogonal and
    Λ
    is real, diagonal

    • Example
      q1=15[21],q2=15[12], Q=15[2112]=15SA=QΛQT=(15S)Λ(15ST)Λ=QTAQ=(15ST)A(15S)
    • Proof
    1. If
      λiλj, Axi=λixi
      and
      Axj=λjxj

      xjT(Axi)=xjT(λixi)=λixjTxi(xjTA)xi=(ATxj)Txi=(Axj)Txi=λjxjTxixjT(Axi)=(xjTA)xi λiλjxjTxi=0xixj
    2. If there exists repeated
      λ
      , by schur's decomposition
      A=QUQTAT=(QUQT)T=QUTQT=AU=UTU must be diagonal
    • Remark 1
      A=QΛQT=λ1q1q1T+λ2q2q2T++λnqnqnT

      where each
      qiqiT
      is a rank-1 matrix
      This theorem suggest that every symmetric matrix can be decomposed into the sum of
      n
      rank-1 matrices.
      Moreover, if we group some
      λi
      's together (ex. if
      λ1=λ2
      , use
      λ1(q1q1T+q2q2T)
      )
      we obtain
      A=i=1kλiPi
      where
      Pi
      is the projection matrix onto the eigenspace
      Eλi
    • Remark 2
      For symmetricmatrix
      A

      the number of non-zero eigenvalues
      =r

      the number of non-zero pivots
      =rank(A)=rank(Λ)=
      the number of eigenvalues

Symmetric Matrix

  • Theorem
    A symmetric matrix has only real eigenvalues

    • Recall (complex conjugate):
      Let
      z=a+bi, z=abi

      For any two complex number
      z, w
      1. z+w=z+w
      2. zw=zw
      3. zw=z w
      4. zw=z¯w¯ if w0
    • Proof
      Let
      λ
      be an eigenvalue and
      x
      be a corresponding eigenvector,
      Ax=λx

      Ax=Ax=λx=λ x

      consider
      λxTx=(Ax)Tx=xTATx=xTAx=xTλ x=λxTxλ=λλR
  • Theorem
    For a real matrix

    A (not necessarily symmetric), complex
    λ
    and
    x
    come in conjugate pairs

    • Proof
      Ax=λxAx=λxAx=λ xλ is also an eigenvalue with x being an eigenvector
    • Example
      A=[0110]|AλI|=|[λ11λ]|=λ2+1=0λ=±iλ1=i, x1=[1i], λ2=i, x2=[1i]λ2=λ1, x2=x1

Schur Decomposition

  • Theorem
    Let
    A
    be a square matrix,
    A=QUQ1
    where
    U
    is an upper triangular matrix and
    Q
    is unitary
    (i.e. QT=Q1)

    Moreover, if
    A
    has real eigenvalues, then
    QTQ=I
    (orthogonal matrix)
    • Proof (by induction)
      Assume this is true for any
      (n1)×(n1)
      matrices
      Let
      q1
      be an eigenvector s.t.
      Aq1=λq1

      Extend
      q1
      to an orthogonal basis
      {q1, q2, , qn}
      via Gram-Schmidt Process
      Let
      Q1=[q1q2qn]
      is unitary
      Q1TAQ1=[q1Tq2TqnT][Aq1Aq2Aqn]=[q1Tq2TqnT][λq1Aq2Aqn]=[λ0A20] where A2(n1)×(n1)=Q2U2Q2T

      Let
      Q=Q1[10T0Q2]
      is unitary because
      Q2
      is unitary
      QTQ=[10T0Q2T]Q1TQ1[10T0Q2]=[10T0Q2T][10T0Q2]=IQTAQ=[10T0Q2T]Q1TAQ1[10T0Q2]=[10T0Q2T][λ0A20][10T0Q2]=[λ0Q2TA2Q20]=[λ0U20]=U