Try   HackMD

Linear Algebra Note 5

Determinants (2021.11.24)

  • Properties
    9.

    |AB|=|A||B|

    • Recall:
      rank(AB)min(rank(A), rank(B))
    • Proof
      Let
      ARk×l, BRl×m

       vC(AB), v=(AB)x
      where
      x
      is the
      m×1
      vector
      Also,
      v=A(Bx)
      where
      Bx
      is the
      l×1
      vector
       vC(A), i.e. C(AB)C(A)dim(C(AB))dim(C(A)), rank(AB)rank(A)

      Similary,
      rank(AB)rank(B)
      1. when
        |B|=0
        ,
        B
        is singular
        rank(AB)min(rank(A), rank(B))

        AB
        is also singular
        |AB|=0|AB|=|A||B|=0
      2. When
        |B|0
        , Let
        D(A)|AB||B|

        To prove
        D(A)=|A| (|AB||B|=|A||AB|=|A||B|)

        show
        D(A)
        satisfies (i)-(iii)
        (i)
        |In|=1

        D(A=I)=|IB||B|=|B||B|=1=|A|

        (ii) Exchange of two rows leads to change of sign
        Let A=[a1Ta2TanT], A=[a2Ta1TanT], B=[b1b2bm]AB=[a1Ta2TanT][b1b2bm]=[a1Tb1a1Tb2a1Tbma2Tb1a2Tb2a2TbmanTb1anTb2anTbm]AB=[a2Ta1TanT][b1b2bm]=[a2Tb1a2Tb2a2Tbma1Tb1a1Tb2a1TbmanTb1anTb2anTbm]=row exchange of AB|AB|=|AB|, D(A)=|AB||B|=|AB||B|=D(A)

        (iii) The determinant is a linear function of each row separately
        (scalar multiplication)
        A=[a1Tta2TanT], AB=[a1Tb1a1Tb2a1Tbmta2Tb1ta2Tb2ta2TbmanTb1anTb2anTbm]|AB|=t|AB|D(A)=|AB||B|=t|AB||B|=tD(A)

        (vector addition)
        A=[a1T+a1Ta2TanT], AB=[a1Tb1+a1Tb1a1Tb2+a1Tb2a1Tbm+a1Tbma2Tb1a2Tb2a2TbmanTb1anTb2anTbm]A=[a1Ta2TanT], AB=[a1Tb1a1Tb2a1Tbma2Tb1a2Tb2a2TbmanTb1anTb2anTbm]|AB|=|AB|+|AB|D(A)=|AB||B|=|AB|+|AB||B|=|AB||B|+|AB||B|=D(A)+D(A)

        D(A)
        satisfies rule (i)-(iii)
        D(A)=|A|
    • det(A1)=1det(A)
      • Proof
        AA1=I, |AA1|=|A||A1|=|I|=1
    1. |AT|=|A|
      • Proof
        1. when
          |A|=0, A
          is singular
          AT
          is singular
          |AT|=0
        2. when
          |A|0
          , apply
          PA=LU
          (
          P
          = permutation matrix)
          (PA)T=(LU)TATPT=UTLT

          from 9,
          |P||A|=|PA|=|LU|=|L||U|, |AT||PT|=|UT||LT|

          PPT=I|P||PT|=1

          Moreover, a permutation matrix
          P
          can be regarded as s row-exchanged identity matrix
          |P|=(1)k|I|=1 or 1|P||PT|=1|PT|=|P|

          Also,
          |L|=1=|LT|
          due to all-ones diagonal
          |U|=|UT|=
          product of the pivots
          |P||A|=|L||U|=|UT||LT|=|AT||PT|, |PT|=|P||A|=|AT|
  • Summary: How to find determinant (algorithm)
    Use Gaussian elimination

    PA=LU, |P||A|=|L||U|
    |P|=±1, |L|=1, |U|=
    product of the pivots
    |A|=(1)k|U|=(1)k×(product of the pivots)
    ,
    k=
    the number of row exchange

Eigenvectors & Eigenvalues (2021.11.26 ~ 2021.12.03)

  • Example

    A=[0.80.30.20.7], x1=[0.60.4], x2=[11]Ax1=[0.80.30.20.7][0.60.4]=[0.60.4]=x1Ax2=[0.80.30.20.7][11]=[0.50.5]=0.5x2
    Ax1
    and
    Ax2
    lie in the same direction with
    x1
    and
    x2

    Therefore, Ax1=λ1x1, where λ1=1Ax2=λ2x2, where λ2=0.5

    x1, x2
    are called eigenvectors and
    λ1, λ2
    are the corresponding eigenvalues

  • Define(eigenvector and eigenvalue): Let

    A be a
    n×n
    matrix. A non-zero vector
    xV
    is called an eigenvector of
    A
    if there exists a scalar
    λ
    such that
    Ax=λx
    . This
    λ
    is called the eigenvalue corresponding to the eigenvector
    x

  • Theorem
    A scalar

    λ is an eigenvalue if and only if
    |AλI|=0

    • Proof
      If
      x
      is an eigenvector of
      A
      and
      λ
      is the corresponding eigenvalue
      Ax=λxAxλx=0(AλI)x=0xN(AλI)x0N(AλI){0}AλI is singular |AλI|=0
  • Example
    (Finding

    λ)
    A=[0.80.30.20.7]
    , Let
    |AλI|=0

    |[0.8λ0.30.20.7λ]|=0.561.5λ+λ2=0.06=0λ21.5λ+0.5=(λ1)(λ0.5)=0λ=1 or 0.5

    (Finding eigenvectors)
    Solve
    N(AλI)
    to obtain eigenvectors
    λ=1, AλI=[0.20.30.20.3][13200]x1=N(AλI)={c[321]cR}

    λ=0.5, AλI=[0.30.30.20.2][1100]x2=N(AλI)={c[11]cR}

  • Define(trace): Let

    A=[a11a12a1na21a22a2nan1an2ann] be a
    n×n
    square matrix,
    trace(A)
    or
    tr(A)i=1naii

  • Theorem
    Let

    A be a square matrix and
    λ1, λ2, , λn
    be its eigenvalues, then

    1. det(A)=λ1×λ2××λn
    2. tr(A)=i=1nλi
    • Proof
      A=[a11a12a1na21a22a2nan1an2ann], AλIn=[a11λa12a1na21a22λa2nan1an2annλ]det(AλIn)=det(A)++i=1naii(λ)n1+(λ)n

      Let
      λ1, λ2, , λn
      be the roots of the n-order polynomial
      p(λ)=d(λ1λ)(λ2λ)(λnλ)=d[(λ1×λ2××λn)++i=1nλi(λ)n1+(λ)n]

      match
      det(AλI)
      and
      p(λ)

      det(A)=λ1×λ2××λn, tr(A)=i=1naii=i=1nλi
  • Example (Projection matrix)

    P=[12121212], |PλI|=|[12λ121212λ]|=λ2λ=0λ=1 or 0x1=[11], x2=[11]
    Note that
    P
    is a projection matrix onto a subspace spanned by
    [11]

      x1 already in this subspace Px1=λ1x1=x1 (itself) x2 orthogonal to this subspace Px2=λ2x2=0

  • Example (Rotation matrix)

    Q=[0110] rotates a vector
    R2
    by
    90

    check
    Qv=[0110][ab]=[ba]

    (Qv)Tv=[ba]T[ab]=ba+ab=0
    (orthogonal)
    (Find
    λ
    )

    |QλI|=|[λ11λ]|=λ2+1=0, λ=±i

    There doesn't exist any real number
    λ
    and vector
    x
    s.t.
    Qx=λx

    since NO vector stay in the same direction after rotation by degrees other than
    nπ, nZ