--- title: Linear Algebra Note 5 tags: Linear Algebra, 線性代數, 魏群樹, 大學, 國立陽明交通大學, 筆記 --- # Linear Algebra Note 5 ## Determinants (2021.11.24) - Properties 9. $\begin{vmatrix} AB \end{vmatrix} = \begin{vmatrix} A \end{vmatrix}\begin{vmatrix} B \end{vmatrix}$ - Recall: $rank(AB) \le min(rank(A),\ rank(B))$ - Proof Let $A \in \mathbb{R}^{k \times l},\ B \in \mathbb{R}^{l \times m}$ $\forall\ \vec{v} \in C(AB),\ \vec{v} = (AB)\vec{x}$ where $\vec{x}$ is the $m \times 1$ vector Also, $\vec{v} = A(B\vec{x})$ where $B\vec{x}$ is the $l \times 1$ vector $\therefore\ \vec{v} \in C(A),\ i.e.\ C(AB) \subseteq C(A) \\ \implies dim(C(AB)) \le dim(C(A)),\ rank(AB) \le rank(A)$ Similary, $rank(AB) \le rank(B)$ 1. when $\begin{vmatrix} B \end{vmatrix} = 0$ , $B$ is singular $rank(AB) \le min(rank(A),\ rank(B))$ $\implies AB$ is also singular $\implies \begin{vmatrix} AB \end{vmatrix} = 0 \implies \begin{vmatrix} AB \end{vmatrix} = \begin{vmatrix} A \end{vmatrix}\begin{vmatrix} B \end{vmatrix} = 0$ 2. When $\begin{vmatrix} B \end{vmatrix} \not= 0$ , Let $D(A) \equiv {\begin{vmatrix} AB \end{vmatrix} \over \begin{vmatrix} B \end{vmatrix}}$ To prove $D(A) = \begin{vmatrix} A \end{vmatrix}\ ({\begin{vmatrix} AB \end{vmatrix} \over \begin{vmatrix} B \end{vmatrix}} = \begin{vmatrix} A \end{vmatrix} \implies \begin{vmatrix} AB \end{vmatrix} = \begin{vmatrix} A \end{vmatrix}\begin{vmatrix} B \end{vmatrix})$ show $D(A)$ satisfies (i)-(iii) ==(i)== $\begin{vmatrix} I_n \end{vmatrix} = 1$ $D(A=I) = {\begin{vmatrix} IB \end{vmatrix} \over \begin{vmatrix} B \end{vmatrix}} = {\begin{vmatrix} B \end{vmatrix} \over \begin{vmatrix} B \end{vmatrix}} = 1 = \begin{vmatrix} A \end{vmatrix}$ ==(ii)== Exchange of two rows leads to change of sign $\text{Let } A = \left[\begin{array}{c} \vec{a_1}^T \\ \vec{a_2}^T \\ \vdots \\ \vec{a_n}^T \\ \end{array}\right],\ A' = \left[\begin{array}{c} \vec{a_2}^T \\ \vec{a_1}^T \\ \vdots \\ \vec{a_n}^T \\ \end{array}\right],\ B = \left[\begin{array}{c c c c} \vec{b_1} & \vec{b_2} & \cdots & \vec{b_m} \\ \end{array}\right] \\ AB = \left[\begin{array}{c} \vec{a_1}^T \\ \vec{a_2}^T \\ \vdots \\ \vec{a_n}^T \\ \end{array}\right]\left[\begin{array}{c c c c} \vec{b_1} & \vec{b_2} & \cdots & \vec{b_m} \\ \end{array}\right] = \left[\begin{array}{c c c c} \vec{a_1}^T\vec{b_1} & \vec{a_1}^T\vec{b_2} & \cdots & \vec{a_1}^T\vec{b_m} \\ \vec{a_2}^T\vec{b_1} & \vec{a_2}^T\vec{b_2} & \cdots & \vec{a_2}^T\vec{b_m} \\ \vdots & \vdots & \ddots & \vdots \\ \vec{a_n}^T\vec{b_1} & \vec{a_n}^T\vec{b_2} & \cdots & \vec{a_n}^T\vec{b_m} \\ \end{array}\right] \\ \begin{split}A'B = \left[\begin{array}{c} \vec{a_2}^T \\ \vec{a_1}^T \\ \vdots \\ \vec{a_n}^T \\ \end{array}\right]\left[\begin{array}{c c c c} \vec{b_1} & \vec{b_2} & \cdots & \vec{b_m} \\ \end{array}\right] &= \left[\begin{array}{c c c c} \vec{a_2}^T\vec{b_1} & \vec{a_2}^T\vec{b_2} & \cdots & \vec{a_2}^T\vec{b_m} \\ \vec{a_1}^T\vec{b_1} & \vec{a_1}^T\vec{b_2} & \cdots & \vec{a_1}^T\vec{b_m} \\ \vdots & \vdots & \ddots & \vdots \\ \vec{a_n}^T\vec{b_1} & \vec{a_n}^T\vec{b_2} & \cdots & \vec{a_n}^T\vec{b_m} \\ \end{array}\right] \\ &= \text{row exchange of } AB\end{split} \\ \therefore \begin{vmatrix} A'B \end{vmatrix} = -\begin{vmatrix} AB \end{vmatrix},\ D(A') = {\begin{vmatrix} A'B \end{vmatrix} \over \begin{vmatrix} B \end{vmatrix}} = {-\begin{vmatrix} AB \end{vmatrix} \over \begin{vmatrix} B \end{vmatrix}} = -D(A)$ ==(iii)== The determinant is a linear function of each row separately **(scalar multiplication)** $A' = \left[\begin{array}{c} \vec{a_1}^T \\ t\vec{a_2}^T \\ \vdots \\ \vec{a_n}^T \\ \end{array}\right],\ A'B = \left[\begin{array}{c c c c} \vec{a_1}^T\vec{b_1} & \vec{a_1}^T\vec{b_2} & \cdots & \vec{a_1}^T\vec{b_m} \\ t\vec{a_2}^T\vec{b_1} & t\vec{a_2}^T\vec{b_2} & \cdots & t\vec{a_2}^T\vec{b_m} \\ \vdots & \vdots & \ddots & \vdots \\ \vec{a_n}^T\vec{b_1} & \vec{a_n}^T\vec{b_2} & \cdots & \vec{a_n}^T\vec{b_m} \\ \end{array}\right] \\ \begin{vmatrix} A'B \end{vmatrix} = t\begin{vmatrix} AB \end{vmatrix} \\ \implies D(A') = {\begin{vmatrix} A'B \end{vmatrix} \over \begin{vmatrix} B \end{vmatrix}} = {t\begin{vmatrix} AB \end{vmatrix} \over \begin{vmatrix} B \end{vmatrix}} = tD(A)$ **(vector addition)** $A'' = \left[\begin{array}{c} \vec{a_1}^T+\vec{a_1}'^T \\ \vec{a_2}^T \\ \vdots \\ \vec{a_n}^T \\ \end{array}\right],\ A''B = \left[\begin{array}{c c c c} \vec{a_1}^T\vec{b_1}+\vec{a_1}'^T\vec{b_1} & \vec{a_1}^T\vec{b_2}+\vec{a_1}'^T\vec{b_2} & \cdots & \vec{a_1}^T\vec{b_m}+\vec{a_1}'^T\vec{b_m} \\ \vec{a_2}^T\vec{b_1} & \vec{a_2}^T\vec{b_2} & \cdots & \vec{a_2}^T\vec{b_m} \\ \vdots & \vdots & \ddots & \vdots \\ \vec{a_n}^T\vec{b_1} & \vec{a_n}^T\vec{b_2} & \cdots & \vec{a_n}^T\vec{b_m} \\ \end{array}\right] \\ A''' = \left[\begin{array}{c} \vec{a_1}'^T \\ \vec{a_2}^T \\ \vdots \\ \vec{a_n}^T \\ \end{array}\right],\ A'''B = \left[\begin{array}{c c c c} \vec{a_1}'^T\vec{b_1} & \vec{a_1}'^T\vec{b_2} & \cdots & \vec{a_1}'^T\vec{b_m} \\ \vec{a_2}^T\vec{b_1} & \vec{a_2}^T\vec{b_2} & \cdots & \vec{a_2}^T\vec{b_m} \\ \vdots & \vdots & \ddots & \vdots \\ \vec{a_n}^T\vec{b_1} & \vec{a_n}^T\vec{b_2} & \cdots & \vec{a_n}^T\vec{b_m} \\ \end{array}\right] \\ \begin{vmatrix} A''B \end{vmatrix} = \begin{vmatrix} AB \end{vmatrix} + \begin{vmatrix} A'''B \end{vmatrix} \\ \implies D(A'') = {\begin{vmatrix} A''B \end{vmatrix} \over \begin{vmatrix} B \end{vmatrix}} = {\begin{vmatrix} AB \end{vmatrix}+\begin{vmatrix} A'''B \end{vmatrix} \over \begin{vmatrix} B \end{vmatrix}} = {\begin{vmatrix} AB \end{vmatrix} \over \begin{vmatrix} B \end{vmatrix}} + {\begin{vmatrix} A'''B \end{vmatrix} \over \begin{vmatrix} B \end{vmatrix}} = D(A) + D(A''')$ $D(A)$ satisfies rule (i)-(iii) $\implies D(A) = \begin{vmatrix} A \end{vmatrix}$ - $det(A^{-1}) = {1 \over det(A)}$ - Proof $AA^{-1} = I,\ \begin{vmatrix} AA^{-1} \end{vmatrix} = \begin{vmatrix} A \end{vmatrix}\begin{vmatrix} A^{-1} \end{vmatrix} = \begin{vmatrix} I \end{vmatrix} = 1$ 10. $\begin{vmatrix} A^T \end{vmatrix} = \begin{vmatrix} A \end{vmatrix}$ - Proof 1. when $\begin{vmatrix} A \end{vmatrix} = 0,\ A$ is singular $\implies A^T$ is singular $\implies \begin{vmatrix} A^T \end{vmatrix} = 0$ 2. when $\begin{vmatrix} A \end{vmatrix} \not= 0$ , apply $PA=LU$ ($P$ = permutation matrix) $(PA)^T = (LU)^T \implies A^TP^T = U^TL^T$ from 9, $\begin{vmatrix} P \end{vmatrix}\begin{vmatrix} A \end{vmatrix} = \begin{vmatrix} PA \end{vmatrix} = \begin{vmatrix} LU \end{vmatrix} = \begin{vmatrix} L \end{vmatrix}\begin{vmatrix} U \end{vmatrix},\ \begin{vmatrix} A^T \end{vmatrix}\begin{vmatrix} P^T \end{vmatrix} = \begin{vmatrix} U^T \end{vmatrix}\begin{vmatrix} L^T \end{vmatrix}$ $\because PP^T = I \implies \begin{vmatrix} P \end{vmatrix}\begin{vmatrix} P^T \end{vmatrix} = 1$ Moreover, a permutation matrix $P$ can be regarded as s row-exchanged identity matrix $\begin{vmatrix} P \end{vmatrix} = (-1)^k\begin{vmatrix} I \end{vmatrix} = 1\ or\ -1 \\ \because \begin{vmatrix} P \end{vmatrix}\begin{vmatrix} P^T \end{vmatrix} = 1 \implies \begin{vmatrix} P^T \end{vmatrix} = \begin{vmatrix} P \end{vmatrix}$ Also, $\begin{vmatrix} L \end{vmatrix} = 1 = \begin{vmatrix} L^T \end{vmatrix}$ due to all-ones diagonal $\begin{vmatrix} U \end{vmatrix} = \begin{vmatrix} U^T \end{vmatrix} =$ product of the pivots $\begin{vmatrix} P \end{vmatrix}\begin{vmatrix} A \end{vmatrix} = \begin{vmatrix} L \end{vmatrix}\begin{vmatrix} U \end{vmatrix} = \begin{vmatrix} U^T \end{vmatrix}\begin{vmatrix} L^T \end{vmatrix} = \begin{vmatrix} A^T \end{vmatrix}\begin{vmatrix} P^T \end{vmatrix},\ \begin{vmatrix} P^T \end{vmatrix} = \begin{vmatrix} P \end{vmatrix} \implies \begin{vmatrix} A \end{vmatrix} = \begin{vmatrix} A^T \end{vmatrix}$ - Summary: How to find determinant (algorithm) Use Gaussian elimination $PA=LU,\ \begin{vmatrix} P \end{vmatrix}\begin{vmatrix} A \end{vmatrix} = \begin{vmatrix} L \end{vmatrix}\begin{vmatrix} U \end{vmatrix}$ $\begin{vmatrix} P \end{vmatrix} = \pm 1,\ \begin{vmatrix} L \end{vmatrix} = 1,\ \begin{vmatrix} U \end{vmatrix} =$ product of the pivots $\therefore \begin{vmatrix} A \end{vmatrix} = (-1)^k\begin{vmatrix} U \end{vmatrix} = (-1)^k \times (product\ of\ the\ pivots)$ , $k =$ the number of row exchange ## Eigenvectors & Eigenvalues (2021.11.26 ~ 2021.12.03) - Example $A = \left[\begin{array}{c c} 0.8 & 0.3 \\ 0.2 & 0.7 \\ \end{array}\right],\ \vec{x_1} = \left[\begin{array}{c} 0.6 \\ 0.4 \\ \end{array}\right],\ \vec{x_2} = \left[\begin{array}{c} 1 \\ -1 \\ \end{array}\right] \\ A\vec{x_1} = \left[\begin{array}{c c} 0.8 & 0.3 \\ 0.2 & 0.7 \\ \end{array}\right]\left[\begin{array}{c} 0.6 \\ 0.4 \\ \end{array}\right] = \left[\begin{array}{c} 0.6 \\ 0.4 \\ \end{array}\right] = \vec{x_1} \\ A\vec{x_2} = \left[\begin{array}{c c} 0.8 & 0.3 \\ 0.2 & 0.7 \\ \end{array}\right]\left[\begin{array}{c} 1 \\ -1 \\ \end{array}\right] = \left[\begin{array}{c} 0.5 \\ -0.5 \\ \end{array}\right] = 0.5\vec{x_2}$ $A\vec{x_1}$ and $A\vec{x_2}$ lie in the same direction with $\vec{x_1}$ and $\vec{x_2}$ $\text{Therefore, } \begin{split} &A\vec{x_1} = \lambda_1 \vec{x_1},\ \text{where } \lambda_1 = 1 \\ &A\vec{x_2} = \lambda_2 \vec{x_2},\ \text{where }\lambda_2 = 0.5\end{split}$ $\vec{x_1},\ \vec{x_2}$ are called ==eigenvectors== and $\lambda_1,\ \lambda_2$ are the corresponding ==eigenvalues== - Define(eigenvector and eigenvalue): Let $A$ be a $n \times n$ matrix. A non-zero vector $\vec{x} \in \mathbb{V}$ is called an eigenvector of $A$ if there exists a scalar $\lambda$ such that $A\vec{x} = \lambda\vec{x}$ . This $\lambda$ is called the eigenvalue corresponding to the eigenvector $\vec{x}$ - Theorem A scalar $\lambda$ is an eigenvalue if and only if $\begin{vmatrix} A - \lambda I \end{vmatrix} = 0$ - Proof If $\vec{x}$ is an eigenvector of $A$ and $\lambda$ is the corresponding eigenvalue $\begin{split}A\vec{x} = \lambda \vec{x} &\iff A\vec{x} - \lambda \vec{x} = 0 \\ &\iff (A-\lambda I) \vec{x} = 0 \\ &\iff \vec{x} \in N(A-\lambda I)\end{split} \\ \begin{split}\because \vec{x} \not= \vec{0} &\implies N(A-\lambda I) \not= \{ \vec{0} \} \\ &\iff A-\lambda I \text{ is singular } \implies \begin{vmatrix} A-\lambda I \end{vmatrix} = 0\end{split}$ - Example **(Finding $\lambda$)** $A =\left[\begin{array}{c c} 0.8 & 0.3 \\ 0.2 & 0.7 \\ \end{array}\right]$ , Let $\begin{vmatrix} A-\lambda I \end{vmatrix} = 0$ $\begin{vmatrix} \left[\begin{array}{c c} 0.8-\lambda & 0.3 \\ 0.2 & 0.7-\lambda \\ \end{array}\right] \end{vmatrix} = 0.56-1.5\lambda+\lambda^2=0.06 = 0 \\ \lambda^2-1.5\lambda+0.5 = (\lambda - 1)(\lambda - 0.5) = 0 \implies \lambda = 1\ or\ 0.5$ **(Finding eigenvectors)** Solve $N(A-\lambda I)$ to obtain eigenvectors $\begin{split}\lambda = 1,\ &A - \lambda I = \left[\begin{array}{c c} -0.2 & 0.3 \\ 0.2 & -0.3 \\ \end{array}\right] \to \left[\begin{array}{c c} 1 & {-3 \over 2} \\ 0 & 0 \\ \end{array}\right] \\ &\vec{x_1} = N(A - \lambda I) = \{ c\left[\begin{array}{c c} {3 \over 2} \\ 1 \\ \end{array}\right] \mid c \in \mathbb{R} \}\end{split}$ $\begin{split}\lambda = 0.5,\ &A - \lambda I = \left[\begin{array}{c c} 0.3 & 0.3 \\ 0.2 & 0.2 \\ \end{array}\right] \to \left[\begin{array}{c c} 1 & 1 \\ 0 & 0 \\ \end{array}\right] \\ &\vec{x_2} = N(A - \lambda I) = \{ c\left[\begin{array}{c c} -1 \\ 1 \\ \end{array}\right] \mid c \in \mathbb{R} \}\end{split}$ - Define(trace): Let $A = \left[\begin{array}{c c c c} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{array}\right]$ be a $n \times n$ square matrix, $trace(A)$ or $tr(A) \triangleq \sum\limits_{i = 1}^n{a_{ii}}$ - Theorem Let $A$ be a square matrix and $\lambda_1,\ \lambda_2,\ \cdots,\ \lambda_n$ be its eigenvalues, then 1. $det(A) = \lambda_1 \times \lambda_2 \times \cdots \times \lambda_n$ 2. $tr(A) = \sum\limits_{i = 1}^n{\lambda_i}$ - Proof $A = \left[\begin{array}{c c c c} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{array}\right],\ A-\lambda I_n = \left[\begin{array}{c c c c} a_{11}-\lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22}-\lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn}-\lambda \\ \end{array}\right] \\ det(A-\lambda I_n) = det(A) + \cdots + \sum\limits_{i=1}^n{a_{ii}(-\lambda)^{n-1}} + (-\lambda)^n$ Let $\lambda_1,\ \lambda_2,\ \cdots,\ \lambda_n$ be the roots of the n-order polynomial $\begin{split}p(\lambda) &= d(\lambda_1-\lambda)(\lambda_2-\lambda)\cdots(\lambda_n-\lambda) \\ &= d[(\lambda_1 \times \lambda_2 \times \cdots \times \lambda_n) + \cdots + \sum\limits_{i=1}^n{\lambda_i(-\lambda)^{n-1}} + (-\lambda)^n]\end{split}$ match $det(A-\lambda I)$ and $p(\lambda)$ $\implies det(A) = \lambda_1 \times \lambda_2 \times \cdots \times \lambda_n,\ tr(A) = \sum\limits_{i=1}^n{a_{ii}} = \sum\limits_{i=1}^n{\lambda_i}$ - Example (Projection matrix) $P = \left[\begin{array}{c c} {1 \over 2} & {1 \over 2} \\ {1 \over 2} & {1 \over 2} \\ \end{array}\right],\ \begin{vmatrix} P - \lambda I \end{vmatrix} = \begin{vmatrix} \left[\begin{array}{c c} {1 \over 2}-\lambda & {1 \over 2} \\ {1 \over 2} & {1 \over 2}-\lambda \\ \end{array}\right] \end{vmatrix} = \lambda^2-\lambda = 0 \\ \lambda = 1\ or\ 0 \implies \vec{x_1} = \left[\begin{array}{c} 1 \\ 1 \\ \end{array}\right],\ \vec{x_2} = \left[\begin{array}{c} -1 \\ 1 \\ \end{array}\right]$ Note that $P$ is a projection matrix onto a subspace spanned by $\left[\begin{array}{c} 1 \\ 1 \\ \end{array}\right]$ $\begin{split}\therefore\ &\forall\ \vec{x_1} \text{ already in this subspace } &P\vec{x_1} = \lambda_1\vec{x_1} = \vec{x_1} \text{ (itself)} \\ &\forall\ \vec{x_2} \text{ orthogonal to this subspace } &P\vec{x_2} = \lambda_2\vec{x_2} = 0\end{split}$ - Example (Rotation matrix) $Q = \left[\begin{array}{c c} 0 & -1 \\ 1 & 0 \\ \end{array}\right]$ rotates a vector $\in \mathbb{R}^2$ by $90^\circ$ check $Q\vec{v} = \left[\begin{array}{c c} 0 & -1 \\ 1 & 0 \\ \end{array}\right]\left[\begin{array}{c} a \\ b \\ \end{array}\right] = \left[\begin{array}{c} -b \\ a \\ \end{array}\right]$ $(Q\vec{v})^T\vec{v} = \left[\begin{array}{c} -b \\ a \\ \end{array}\right]^T\left[\begin{array}{c} a \\ b \\ \end{array}\right] = -ba+ab = 0$ (orthogonal) **(Find $\lambda$)** $\begin{vmatrix} Q-\lambda I \end{vmatrix} = \begin{vmatrix} \left[\begin{array}{c c} -\lambda & -1 \\ 1 & -\lambda \\ \end{array}\right] \end{vmatrix} = \lambda^2+1 = 0,\ \lambda = \pm i$ There doesn't exist any real number $\lambda$ and vector $\vec{x}$ s.t. $Q\vec{x} = \lambda \vec{x}$ since **NO** vector stay in the same direction after rotation by degrees other than $n\pi,\ n \in \mathbb{Z}$