Try   HackMD

Linear Algebra Note 2

3. Vector Spaces and Subspaces (2021.10.13 ~ 2021.10.22)

  • Define:

    Rn={(a1, a2, , an)aiR}
    (The space
    Rn
    consists of all vectors
    V
    with
    n
    components)

  • Example

    [12]R2, [123]R3, [2π]R2

  • vector operations

    • vector addition:
      v+w
      (element wise addition)
      • Example
        [123]+[2π0]=[1+22+π3+0]=[32+π3]
    • scalar multiplication:
      cv
      where
      cR
      • Example
        c=3, v=[12]cv=3[12]=[36]

Vector Space

  • Define: A vector space
    V
    is a collection of vectors with two operations: (1) vector addition (2) scalar multiplication, so that
    (1)
    v, wV, v+wV

    (2)
    cR, cvV

Any linear combination of vectors in

Rn results in a vector in
Rn

Subspace

  • Define: A subset
    W
    of a vector space
    V
    is called a subspace if
    W
    itself form a vector space with the two operations defined on
    V
    and contains
    O

Since

V has been known as a vector space, so
W
should satisty the 8 axiom of vector as well
verify the closedness of
W

  • Theorem
    Let
    V
    a vector space and
    W
    is a subspace of
    V
    if and only if
    1. OW
      (the same
      O
      in
      V
      )
    2. x+yW for x, yW
      (closed under addition)
    3. cxW for any cR, any xW
      (closed under multiplication)
    • Example1
      Let
      V
      be a vector space,
      V
      itself is a subspace of
      V
      1. OV
      2. x+yV for x, yV
      3. cxV for any cR, any xV
    • Example2
      Z={O}
      is a subspace of
      V
      1. OZ
      2. O+O=OZ
      3. cO=OZ
    • Example3
      M
      : The matrix space of all real
      2×2
      matrices
      M={[abcd]a, b, c, dR}Let D={[e00f]e, fR}

      The collection of all
      2×2
      diagonal matrices
      DM
      is a subspace
      1. [0000]D
      2. [e100f1]+[e200f2]D
      3. [ce100cf1]D
    • Example4
      R3
      is a vector space, and
      W1={[a1, a2, a3]R3a1=3a2, a3=a2}x, yW1, x=[x1, x2, x3], x1=3x2, x3=x2y=[y1, y2, y3], y1=3y2, y3=y21. [0, 0, 0]W12. x+y=[x1+y1, x2+y2, x3+y3]=[3x2+3y2, x2+y2, x2+y2]W13. cx=[cx1, cx2, cx3]=[c(3x2), cx2, cx2]W1W1 is a subspace of R3W2={[a1, a2, a3]R3a1=a3+2}[0, 0, 0]W2W2 is not a subspace of R3

Four Fundamental Subspaces

  1. Column space of
    Am×n
    :
    C(A){AxxRn}
  2. Row space of
    Am×n
    :
    C(AT){ATyyRm}
  3. Null space of
    A
    :
    N(A){xRnAx=O}
  4. Left Null space of
    A
    :
    N(AT){yRmATy=O} (ATy=OyTA=O)

Column Space

C(A) (The column space of
A
) is defined by all linear combinations of the columns of
A

Let A=[104323], C(A)={AxxR2}={x1[142]+x2[033]x1, x2R}

Hence
C(A)
is a collection of
b
for which
Ax=b
is solvable, i.e.
Ax=b
if and only if
bC(A)

  • Example1

    A=I2×2=[1001]C(A)={AxxR2}={x1[10]+x2[01]x1, x2R}

  • Example2

    A=[1224]C(A)={AxxR2}={x1[12]+x2[24]x1, x2R}={(x1+2x2)[12]x1, x2R}Let x1+2x2=y{y[12]yR}The solution of Ax=b form a line

  • Example3

    A=[123004]2×3C(A)={x1[10]+x2[20]+x3[34]x1, x2, x3R}={x1[10]+2x2[10]+x3[34]x1, x2, x3R}={y[10]+x3[34]y=x1+2x2, x3R}

  • Theorem

    C(A) is a subspace of
    Rm

    • Proof
      1. AOn×1=Om×1Om×1C(A), Om×1Rm
      2. x, yC(A), we have xm×1=Axn×1 and ym×1=Ayn×1 where x, yRnx+y=Ax+Ay=A(x+y)=Az where z=x+yRnx+yC(A)
      3. cRcx=cAx=A(cx)=Az where z=cxRncxC(A)

Null Space

  • Define: The null space of

    Am×n consists of all solutions of
    Ax=O
    , denoted by
    N(A)
    , i.e.
    N(A){xRnAx=O}

  • Theorem

    N(A) is a subspace of
    Rn

    • Proof
      1. Let x=OAO=OON(A)
      2. x, yN(A), Ax=O, Ay=OA(x+y)=Ax+Ay=O+O=Ox+yN(A)
      3. cRA(cx)=cAx=OcxN(A)
  • Example1

    A=[1236]
    Solve
    Ax=O

    [AO]=[120360][120000] x1+2x2=0 x1=2x2N(A)={c[21]cR}

    (
    N(A)
    is a line consisting all solutions to
    Ax=O
    )

  • Example2

    A=[1238]2×2, B=[123824610]4×2, C=[122438616]2×4A=[1238][1001]x1=0x2=0The only solution to Ax=O is x=O i.e. N(A)={O}B=[123824610][10010000]x1=0x2=0Again, the only solution to Bx=O is x=O i.e. N(B)={O}C=[122438616][10200102]x1+2x3=0x2+2x4=0x1=2x3x2=2x4N(C)={[x1x2x3x4]x1=2x3, x2=2x4, x1,x2,x3,x4R}={[2x32x4x3x4]x3,x4R}={x3[2010]+x4[0201]x3,x4R}
    i.e.
    N(C)
    has all linear combination of
    [2010], [0201]

    Since

    N(C) is a subspace, any linear combination of special solutions (
    [2010], [0201]
    ) lies in
    N(C)

    Variables corresponding to pivot columns → pivot variables, ex.

    x1,
    x2

    Variables corresponding to free columns → free variables, ex.
    x3
    ,
    x4

  • Example3

    A=[130210014313164]R=[130210014300000]x1+3x2+2x4x5=0x3+4x43x5=0N(A)=N(R)={[x1x2x3x4x5]x1+3x2+2x4x5=0x3+4x43x5=0, x1,x2,x3,x4,x5R}={[3x22x4+x5x24x4+3x5x4x5]x2,x4,x5R}={x2[31000]+x4[20410]+x5[10301]x2,x4,x5R}
    Let
    N=[321100043010001]
    ,
    span(N)=
    linear combination of the column vectors in
    N=N(A)=N(R)

    Rearrange
    N
    (null space matrix)
    N=[321043100010001]=[F2×3I3×3]r pivot variablesnr free variables

    Rearrange
    RR=[103210104300000]=[I2×2F2×3O1×2O2×3]r pivot rowsmr zero rows

    Check
    RN=[I2×2F2×3O1×2O2×3][F2×3I3×3]=[F2×3+F2×3O1×3+O1×3]=O3×3

  • A general approach to find

    N(A)

    1. Identify special solutions
    2. span these special solutions to get
      N(A)
  • Summary: To find

    N(A) of
    A

    1. Use Gauss-Jordan Elimination
      AR
      (reduced row echelon form)
    2. Identify pivot variables and free variables
    3. Identify special solutions (the number of special solutions is equal to the number of free variables)
    4. span({special solutions})=N(A)

    Note that in step 2, if there is no free variables

    N(A)={O}

  • Define: The dimension of a null space is the number of gree variables,
    i.e.

    dim(N(A))=the number of special solutions=the number of free variables

  • Define: The rank of

    Am×n ,
    r=rank(A)=the number of pivots

Span

  • Define: We defined the span of
    U
    to be all linear combination of vectors in
    U
    , denoted by
    span(U)
  • span(U)
    is always a subspace of
    V(Rm)
  • Example
    U={u1, u2, , un}V
    , i.e.
    uiV
    as well
    span(U)={c1u1+c2u2++cnunc1, c2, , cnR}
  • C(A)=span(U)
    where
    U={column vectors of A}

The Complete Solution to
Ax=b

  • Define: For

    Ax=b, when
    {b=0         Homogeneous linear equationb0 Non-homogeneous linear equation

  • Example

    Ax=b, A=[130200141316], b=[b1b2b3][Ab]=[1302b10014b21316b3][1302b10014b20000b3b2b1]
    Ax=b
    has solutions if and only if
    b3b2b1=0b3=b1+b2

    Assume
    B3=b1+b2, {x1+3x2+2x4=b1x3+4x4=b2{x1=3x22x4+b1x3=4x4+b2x=[x1x2x3x4]=[3x22x4+b1x24x4+b2x4]=x2[3100]+x4[2041]element of N(A)+[b10b20]particular solution

    1. when b1=b2=0, b=[b1b2b3]=[b1b2b1+b2]=0xnx2[3100]+x4[2041]N(A) is a solution Ax=0In fact N(A)={x2[3100]+x4[2041]x2,x4R}
    2. For any case of
      x2,x4
      ,
      x2[3100]+x4[2041]+[b10b20]
      is a solution to
      Ax=b
      , setting
      x2=x4=0,xp[b10b20]
      is a particular solution to
      Ax=b
    3. The solution space of
      Ax=b
      is
      K={xp}+KH
      where
      KH
      is the solution space of homogeneous equation
      Ax=0
      , i.e.
      N(A)
  • Theorem
    Let

    K be the solution set of
    Ax=b
    ,
    KH
    be the solution set of the corresponding homogeneous system
    (Ax=0)
    , then for any solution
    xp
    to
    Ax=b
    ,
    K=xp+KH={xp+xnxnKH}

    • Proof
      Let
      xp
      be the solution s.t.
      Axp=b

      Let
      x
      be a solution to
      Ax=b

      Ax=b
      i.e.
      xK

      A(xxp)=AxAxp=bb=0

      xxp
      is a solution to
      Ax=0xxpKH

      Let
      xn=xxpKHx=xp+xn

      K{xp}+KH ...(i)

      Next, let
      x{xp}+KHx=xp+xn
      for some
      xnKH

      Ax=Axp+Axn=b+0

      x
      is a solution to
      Ax=bxK{xp}+KHK ...(ii)

      From
      (i)
      and
      (ii)
      ,
      K={xp}+KH