Define: A vector is a collection of numbers in \(\mathbb{R}\)
\(\vec{V} = \left[\begin{array}{c}
1 \\
1 \\
\end{array}\right],\ \vec{W} = \left[\begin{array}{c}
2 \\
3 \\
\end{array}\right]\)
Operations
Linear combination
\(c\vec{V} + d\vec{W} = c\left[\begin{array}{c}
1 \\
1 \\
\end{array}\right] + d\left[\begin{array}{c}
2 \\
3 \\
\end{array}\right] = \left[\begin{array}{c}
c \\
c \\
\end{array}\right] + \left[\begin{array}{c}
2d \\
3d \\
\end{array}\right] = \left[\begin{array}{c}
c + 2d \\
c + 3d \\
\end{array}\right]\)
There exists an element \(\vec{O}\) in \(\mathbb{V}\) (vector space), called the zero vector such that \(\vec{V} + \vec{O} = \vec{V}\) for all \(\vec{V}\) in \(\mathbb{V}\)
If addition for every \(\vec{V}\) in \(\mathbb{V}\), there exists an element \(\vec{(-V)}\) in \(\mathbb{V}\), called the additive inverse of \(\vec{V}\) such that \(\vec{V} + \vec{(-V)} = \vec{O}\)
The problem is equivalent to finding a linear combination of column vector of \(A\) such that the result is \(\vec{b}\)
The coefficients \((x, y)\) are the solution of \(\vec{X}\)
\(\begin{split}\left\{\begin{array}{c} x - 2y = 1 \\ 3x + 2y = 11 \\ \end{array}\right.\ &\xrightarrow{matrix\ form} \ \left[\begin{array}{c c} 1 & -2 \\ 3 & 2 \\ \end{array}\right] \left[\begin{array}{c} x \\ y \\ \end{array}\right] = \left[\begin{array}{c} 1 \\ 11 \\ \end{array}\right] \\ &\xrightarrow{column\ picture} \ x\left[\begin{array}{c} 1 \\ 3 \\ \end{array}\right] + y\left[\begin{array}{c} -2 \\ 2 \\ \end{array}\right] = \left[\begin{array}{c} 1 \\ 11 \\ \end{array}\right]\end{split}\)
\(\begin{split}\left\{\begin{array}{c} x + 2y + 3z = 6 \\ 2x + 5y + 2z = 4 \\ 6x - 3y + z = 2 \\ \end{array}\right.\ &\xrightarrow{matrix\ form} \ \left[\begin{array}{c c c} 1 & 2 & 3 \\ 2 & 5 & 2 \\ 6 & -3 & 1 \\ \end{array}\right] \left[\begin{array}{c} x \\ y \\ z \\ \end{array}\right] = \left[\begin{array}{c} 6 \\ 4 \\ 2 \\ \end{array}\right] \\ &\xrightarrow{column\ picture} \ x\left[\begin{array}{c} 1 \\ 2 \\ 6 \\ \end{array}\right] + y\left[\begin{array}{c} 2 \\ 5 \\ -3 \\ \end{array}\right] + z\left[\begin{array}{c} 3 \\ 2 \\ 1 \\ \end{array}\right] = \left[\begin{array}{c} 6 \\ 4 \\ 2 \\ \end{array}\right]\end{split}\)
\(\left\{\begin{array}{c} x - 2y = 1 \\ 3x + 2y = 11 \\ \end{array}\right.\ \xrightarrow{augmented\ matrix} \ \left[\begin{array}{c c|c} 1 & -2 & 1 \\ 3 & 2 & 11 \\ \end{array}\right] \left.\begin{array}{c} ... ① \\ ... ② \\ \end{array}\right.\)
\(\begin{split}&\left[\begin{array}{c c|c} \color{red}{1} & -2 & 1 \\ 3 & 2 & 11 \\ \end{array}\right] \left.\begin{array}{c} ... ① \\ ... ② \\ \end{array}\right. \\ \xrightarrow{①\times(-3)+②\ \to\ ②} &\left[\begin{array}{c c|c} \color{red}{1} & -2 & 1 \\ 0 & \color{red}{8} & 8 \\ \end{array}\right] \left.\begin{array}{c} ... ① \\ ... ② \\ \end{array}\right. \\ \xrightarrow{②\div 8\ \to\ ②} &\left[\begin{array}{c c|c} \color{red}{1} & -2 & 1 \\ 0 & \color{red}{1} & 1 \\ \end{array}\right] \left.\begin{array}{c} ... ① \\ ... ② \\ \end{array}\right. \\ \xrightarrow{②\times 2+①\ \to\ ①} &\left[\begin{array}{c c|c} \color{red}{1} & 0 & 3 \\ 0 & \color{red}{1} & 1 \\ \end{array}\right] \left.\begin{array}{c} ... ① \\ ... ② \\ \end{array}\right. \\ \xrightarrow{} &\ \ \ \ \left.\begin{array}{c} x = 3 \\ y = 1 \\ \end{array}\right.\end{split}\)
- A matrix is in row echelon form of
- All rows consisting of only zeros are at the bottom
- The leading coefficient (pivot) of a none zero row always strictly to the right of the leading coefficient of the row above it
\(\begin{split}Augmented\ matrix &\xrightarrow{Gaussian\ Elimination} Row\ echelon\ form \\ &\xrightarrow{Jordan\ Elimination} Reduced\ row\ echelon\ form\end{split}\)
e.g.
\(\begin{split}&\left[\begin{array}{c c c|c}
2 & 4 & -2 & 2 \\
4 & 9 & -3 & 8 \\
-2 & -3 & 7 & 10\\
\end{array}\right] \\
\xrightarrow{Gaussian\ Elimination} &\left[\begin{array}{c c c|c}
\color{red}{2} & 4 & -2 & 2 \\
0 & \color{red}{1} & 1 & 4 \\
0 & 0 & \color{red}{4} & 8\\
\end{array}\right] \\
\xrightarrow{Jordan\ Elimination} &\left[\begin{array}{c c c|c}
\color{red}{1} & 0 & 0 & -1 \\
0 & \color{red}{1} & 0 & 2 \\
0 & 0 & \color{red}{1} & 2 \\
\end{array}\right]\end{split}\)
e.g.
\(\begin{split}&\left\{\begin{array}{c}
-7x - 3y + 3z = 12 \\
2x + 2y + 2z = 0 \\
-x - 4y + 3z = -9\\
\end{array}\right. \\
\xrightarrow{augmented\ matrix}
&\left[\begin{array}{c c c|c}
-7 & -3 & 3 & 12 \\
2 & 2 & 2 & 0 \\
-1 & -4 & 3 & -9 \\
\end{array}\right] \left.\begin{array}{c}
... ① \\
... ② \\
... ③ \\
\end{array}\right. \\
\xrightarrow{row\ exchange\ ①,\ ②}
&\left[\begin{array}{c c c|c}
\color{red}{2} & 2 & 2 & 0 \\
-7 & -3 & 3 & 12 \\
-1 & -4 & 3 & -9\\
\end{array}\right] \left.\begin{array}{c}
... ① \\
... ② \\
... ③ \\
\end{array}\right. \\
\xrightarrow{①\div2\ \to\ ①}
&\left[\begin{array}{c c c|c}
\color{red}{1} & 1 & 1 & 0 \\
-7 & -3 & 3 & 12 \\
-1 & -4 & 3 & -9\\
\end{array}\right] \left.\begin{array}{c}
... ① \\
... ② \\
... ③ \\
\end{array}\right. \\
\xrightarrow{①\times 7 + ②\ \to\ ②} &\left[\begin{array}{c c c|c}
\color{red}{1} & 1 & 1 & 0 \\
0 & \color{red}{4} & 10 & 12 \\
-1 & -4 & 3 & -9\\
\end{array}\right] \left.\begin{array}{c}
... ① \\
... ② \\
... ③ \\
\end{array}\right. \\
\xrightarrow{① + ③\ \to\ ③}
&\left[\begin{array}{c c c|c}
\color{red}{1} & 1 & 1 & 0 \\
0 & \color{red}{4} & 10 & 12 \\
0 & -3 & 4 & -9\\
\end{array}\right] \left.\begin{array}{c}
... ① \\
... ② \\
... ③ \\
\end{array}\right. \\
\xrightarrow{② \times {3 \over 4} + ③\ \to\ ③}
&\left[\begin{array}{c c c|c}
\color{red}{1} & 1 & 1 & 0 \\
0 & \color{red}{4} & 10 & 12 \\
0 & 0 & \color{red}{23 \over 2} & 0\\
\end{array}\right] \left.\begin{array}{c}
... ① \\
... ② \\
... ③ \\
\end{array}\right. \\
\xrightarrow{② \times {1 \over 4},\ ③ \times {2 \over 23} }
&\left[\begin{array}{c c c|c}
1 & 1 & 1 & 0 \\
0 & 1 & {5 \over 2} & 3 \\
0 & 0 & \color{red}{1} & 0\\
\end{array}\right] \left.\begin{array}{c}
... ① \\
... ② \\
... ③ \\
\end{array}\right. \\
\xrightarrow{③ \times {-5 \over 2} + ②\ \to\ ②}
&\left[\begin{array}{c c c|c}
1 & 1 & 1 & 0 \\
0 & \color{red}{1} & 0 & 3 \\
0 & 0 & \color{red}{1} & 0\\
\end{array}\right] \left.\begin{array}{c}
... ① \\
... ② \\
... ③ \\
\end{array}\right. \\
\xrightarrow{③ \times (-1) + ② \times (-1) + ①\ \to\ ①}
&\left[\begin{array}{c c c|c}
\color{red}{1} & 0 & 0 & -3 \\
0 & \color{red}{1} & 0 & 3 \\
0 & 0 & \color{red}{1} & 0\\
\end{array}\right] \left.\begin{array}{c}
... ① \\
... ② \\
... ③ \\
\end{array}\right. \\
\xrightarrow{} &\ \ \ \ \left.\begin{array}{c}
\ \ \ x = -3 \\
y = 3 \\
z = 0 \\
\end{array}\right.\end{split}\)
Given a matrix \(M = \left[\begin{array}{c c c}
m_{11} & m_{12} & m_{13}\\
m_{21} & m_{22} & m_{23}\\
m_{31} & m_{32} & m_{33}\\
\end{array}\right]_{3 \times 3}\)
a row vector \(\vec{r} = \left[\begin{array}{c c c}
r_1 & r_2 & r_3\\
\end{array}\right]_{1 \times 3}\)
\(\begin{split}\vec{r}M &= \left[\begin{array}{c c c}
r_1 & r_2 & r_3\\
\end{array}\right] \left[\begin{array}{c c c}
m_{11} & m_{12} & m_{13}\\
m_{21} & m_{22} & m_{23}\\
m_{31} & m_{32} & m_{33}\\
\end{array}\right] \\
&= \left[\begin{array}{c c c}
r_1m_{11}+ & r_1m_{12}+ & r_1m_{13}+\\
r_2m_{21}+ & r_2m_{22}+ & r_2m_{23}+\\
r_3m_{31} & r_3m_{32} & r_3m_{33}\\
\end{array}\right]_{1 \times 3} \\
&= r_1\left[\begin{array}{c c c}
m_{11} & m_{12} & m_{13}\\
\end{array}\right] + r_2\left[\begin{array}{c c c}
m_{21} & m_{22} & m_{23}\\
\end{array}\right] + r_3\left[\begin{array}{c c c}
m_{31} & m_{32} & m_{33}\\
\end{array}\right]\end{split}\)
\(\begin{split}&\left[\begin{array}{c c c|c} 2 & 4 & -2 & 2 \\ 4 & 9 & -3 & 8 \\ -2 & -3 & 7 & 10 \\ \end{array}\right] \left.\begin{array}{c} ... ① \\ ... ② \\ ... ③ \\ \end{array}\right. \\ \to &\left(\begin{array}{c} ① \to ① \\ ① \times (-2) + ② \to ② \\ ③ \to ③ \\ \end{array}\right) \left[\begin{array}{c c c} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array}\right] \left[\begin{array}{c c c|c} 2 & 4 & -2 & 2 \\ 4 & 9 & -3 & 8 \\ -2 & -3 & 7 & 10 \\ \end{array}\right] = \left[\begin{array}{c c c|c} 2 & 4 & -2 & 2 \\ 0 & 1 & 1 & 4 \\ -2 & -3 & 7 & 10 \\ \end{array}\right] \left.\begin{array}{c} ① \\ ② \\ ③ \\ \end{array}\right. \\ \to &\left(\begin{array}{c} ① \times {1 \over 2} \to ① \\ ② \to ② \\ ① + ③ \to ③ \\ \end{array}\right) \left[\begin{array}{c c c} {1 \over 2} & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ \end{array}\right] \left[\begin{array}{c c c|c} 2 & 4 & -2 & 2 \\ 0 & 1 & 1 & 4 \\ -2 & -3 & 7 & 10 \\ \end{array}\right] = \left[\begin{array}{c c c|c} 1 & 2 & -1 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 1 & 5 & 12 \\ \end{array}\right] \left.\begin{array}{c} ... ① \\ ... ② \\ ... ③ \\ \end{array}\right. \\ \to &\left(\begin{array}{c} ① \to ① \\ ② \to ② \\ ③ - ② \to ③ \\ \end{array}\right) \left[\begin{array}{c c c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \\ \end{array}\right] \left[\begin{array}{c c c|c} 1 & 2 & -1 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 1 & 5 & 12 \\ \end{array}\right] = \left[\begin{array}{c c c|c} 1 & 2 & -1 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 4 & 8 \\ \end{array}\right] \left.\begin{array}{c} ... ① \\ ... ② \\ ... ③ \\ \end{array}\right. \\ \to &\left(\begin{array}{c} ① \to ① \\ ② \to ② \\ ③ \times {1 \over 4} \to ③ \\ \end{array}\right) \left[\begin{array}{c c c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & {1 \over 4} \\ \end{array}\right] \left[\begin{array}{c c c|c} 1 & 2 & -1 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 4 & 8 \\ \end{array}\right] = \left[\begin{array}{c c c|c} 1 & 2 & -1 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 1 & 2 \\ \end{array}\right]\end{split}\)
row exchange
use a permutation matrix \(P_{ij}\) to exchange the \(i^{th}\) and \(j^{th}\) row
e.g. \(P_{23} = \left[\begin{array}{c c c}
1 & 0 & 0 \\
0 & 0 & \color{red}{1} \\
0 & \color{red}{1} & 0 \\
\end{array}\right]\)
Summary: Gaussian Elimination of any square matrix can be expressed as multiplication of matrices using only elimination and permutation matrices
Identity matrix
\(I = \left[\begin{array}{c c c c c}
\color{red}{1} & 0 & \cdots & 0 & 0 \\
0 & \color{red}{1} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots &\vdots \\
0 & 0 & \cdots & \color{red}{1} & 0 \\
0 & 0 & \cdots & 0 & \color{red}{1} \\
\end{array}\right]\)
Define: \(A\) is invertible if there exists a matrix \(B\) , s.t. \(AB = I\)
(\(B\) is the inverse matrix of \(A\) , \(B = A^{-1}\))
Theorem1: If \(A\) is invertible, its inverse matrix is unique (\(A^{-1}\) is unique)
Theorem2: If \(A\) and \(B\) are invertible square matrices, the \(B^{-1}A^{-1} = (AB)^{-1}\)
Proof:
\((AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I\)
Similarly, \((ABCD)^{-1} = D^{-1}C^{-1}B^{-1}A^{-1}\) (reverse order)
Theorem3: \((A^{-1})^{-1} = A\)
Theorem4: If \(A\) is invertible, the one and only one solution to \(A\vec{x} = \vec{b}\) is \(\vec{x} = A^{-1}\vec{b}\)
Theorem5: Suppose there is a non-zero vector \(\vec{x}\) s.t. \(A\vec{x} = \vec{O}\) , then \(A\) cannot have an inverse, i.e. \(A\) is not invertible
Example
\(AA^{-1} = I,\ A^{-1} = \left[\begin{array}{c c c} \vec{x_1} & \vec{x_2} & \vec{x_3} \\ \end{array}\right] \\ AA^{-1} = A\left[\begin{array}{c c c} \vec{x_1} & \vec{x_2} & \vec{x_3} \\ \end{array}\right] = \left[\begin{array}{c c c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array}\right] = I\)
\(Let\ A = \left[\begin{array}{c c c} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \\ \end{array}\right]\)
This can be decomposed into 3 systems of linear equations with a same \(A\)
\(i.\ A\vec{x_1} = \left[\begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array}\right],\ ii.\ A\vec{x_2} = \left[\begin{array}{c} 0 \\ 1 \\ 0 \\ \end{array}\right],\ iii.\ A\vec{x_3} = \left[\begin{array}{c} 0 \\ 0 \\ 1 \\ \end{array}\right]\)
solve the three problems at the same time using Gaussian-Jordan Elimination
Augmented matrix \(\left[\begin{array}{c|c}
A & I \\
\end{array}\right]\)
\(\begin{split}= &\left[\begin{array}{c c c|c c c}
2 & -1 & 0 & 1 & 0 & 0 \\
-1 & 2 & -1 & 0 & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1 \\
\end{array}\right] \\
\to &\left[\begin{array}{c c c|c c c}
2 & -1 & 0 & 1 & 0 & 0 \\
0 & {3 \over 2} & -1 & {1 \over 2} & 1 & 0 \\
0 & 0 & {4 \over 3} & {1 \over 3} & {2 \over 3} & 1 \\
\end{array}\right] \\
\to &\left[\begin{array}{c c c|c c c}
1 & 0 & 0 & {3 \over 4} & {1 \over 2} & {1 \over 4}\\
0 & 1 & 0 & {1 \over 2} & 1 & {1 \over 2}\\
0 & 0 & 1 & {1 \over 4} & {1 \over 2} & {3 \over 4}\\
\end{array}\right] \\
\to &\ \vec{x_1} = \left[\begin{array}{c}
{3 \over 4} \\
{1 \over 2} \\
{1 \over 4} \\
\end{array}\right],\ \vec{x_2} = \left[\begin{array}{c}
{1 \over 2} \\
1 \\
{1 \over 2} \\
\end{array}\right],\ \vec{x_3} = \left[\begin{array}{c}
{1 \over 4} \\
{1 \over 2} \\
{3 \over 4} \\
\end{array}\right] \\
\implies &\ A^{-1} = \left[\begin{array}{c c c}
\vec{x_1} & \vec{x_2} & \vec{x_3} \\
\end{array}\right] = \left[\begin{array}{c c c}
{3 \over 4} & {1 \over 2} & {1 \over 4}\\
{1 \over 2} & 1 & {1 \over 2}\\
{1 \over 4} & {1 \over 2} & {3 \over 4}\\
\end{array}\right]\end{split}\)
\(LU\) factorization (decomposition) \(\equiv\) Gaussian Elimination
\(A = LU\) where \(L\) is the lower triangular matrix and \(U\) is the upper triangular matrix (Assume: \(A\) is square matrix and is properly permutated)
\(A_{3 \times 3} = \left[\begin{array}{c c c} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array}\right] = \left[\begin{array}{c c c} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \\ \end{array}\right] \left[\begin{array}{c c c} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \\ \end{array}\right]\)
\(L\): Contains the information of row reduction performed in the Gaussian Elimination with lower triangular elements being the coefficients used
\(U\): Result of Gaussian Elimination with pivots in diagonal (Row echelon form)
\(\begin{split}A = L\color{red}{U} = L\color{red}{DU'} &= \left[\begin{array}{c c c} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -1 & 1 \\ \end{array}\right] \left[\begin{array}{c c c} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 0 & 1 \\ \end{array}\right] \\ &= \left[\begin{array}{c c c} \color{red}{1} & 0 & 0 \\ 2 & \color{red}{1} & 0 \\ -1 & -1 & \color{red}{1} \\ \end{array}\right] \left[\begin{array}{c c c} 2 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & -0 & 1 \\ \end{array}\right] \left[\begin{array}{c c c} \color{red}{1} & {1 \over 2} & {1 \over 2} \\ 0 & \color{red}{1} & {1 \over 4} \\ 0 & 0 & \color{red}{1} \\ \end{array}\right]\end{split}\)
Define: For a matrix \(A\), we denote by \(A^{T}\) as the transpose of \(A\), where the column of \(A^{T}\) are the rows of \(A\), i.e. \([A^{T}]_{ij} \triangleq [A]_{ji}\)
Example
\(A = \left[\begin{array}{c c c}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{array}\right] \to A^{T} = \left[\begin{array}{c c c}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9 \\
\end{array}\right] \\
B = \left[\begin{array}{c c}
1 & 4 \\
2 & 5 \\
3 & 6 \\
\end{array}\right]_{3 \times 2} \to B^{T} = \left[\begin{array}{c c c}
1 & 2 & 3 \\
4 & 5 & 6 \\
\end{array}\right]_{2 \times 3} \\
D = \left[\begin{array}{c c c c}
d_1 & 0 & \cdots & 0 \\
0 & d_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_n \\
\end{array}\right]_{n \times n} \to D^{T} = D\)
Properties
Define: For a symmetric matrux \(A\), \(A^T = A\), i.e. \(a_ij = a_ji\)
Theorem:
For any matrix \(R_{m \times n}\), \(R^TR\) and \(RR^T\) are both symmetric
Example
\(\text{Let } R = \left[\begin{array}{c c c}
-1 & 1 & 0 \\
0 & -1 & 1 \\
\end{array}\right],\ R^TR = \left[\begin{array}{c c}
-1 & 0 \\
1 & -1 \\
0 & 1 \\
\end{array}\right] \left[\begin{array}{c c c}
-1 & 1 & 0 \\
0 & -1 & 1 \\
\end{array}\right] = \left[\begin{array}{c c c}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1 \\
\end{array}\right]\)
\(\begin{split}A = \left[\begin{array}{c c} 1 & 2 \\ 2 & 7 \\ \end{array}\right] &= \left[\begin{array}{c c} 1 & 0 \\ 2 & 1 \\ \end{array}\right] \left[\begin{array}{c c} 1 & 2 \\ 0 & 3 \\ \end{array}\right] \\ &= \left[\begin{array}{c c} 1 & 0 \\ 2 & 1 \\ \end{array}\right] \left[\begin{array}{c c} 1 & 0 \\ 0 & 3 \\ \end{array}\right] \left[\begin{array}{c c} 1 & 2 \\ 0 & 1 \\ \end{array}\right] = LDL^T\end{split}\)
Define: A permutation matrix \(P\) has the rows of \(I\) in any order
Example
\(P_{21} = \left[\begin{array}{c c c}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{array}\right],\ P_{31} = \left[\begin{array}{c c c}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{array}\right],\ P_{32} = \left[\begin{array}{c c c}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{array}\right] \\
P_{21}P_{31} = \left[\begin{array}{c c c}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{array}\right],\ P_{31}P_{32} = \left[\begin{array}{c c c}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{array}\right]\, P_{21}P_{32} = \left[\begin{array}{c c c}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{array}\right] \\
P_{21}P_{31}P_{32} = \left[\begin{array}{c c c}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{array}\right] = P_{31} \\
P_{21}P_{21} = \left[\begin{array}{c c c}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}\right] = I\)
There are \(6(= 3!)\) ways to permute the rows
There are \(n!\) permutation matrix in \(A_{n \times n}\)
Theorem:
\(P^{-1} = P^T\)
\((PP^T)_{ij}\) is the \(i^{th}\) row multiply with the \(j^{th}\) column
Thus, \(PP^T = I\), similary \(P^TP = I \implies P^{-1} = P^T\)
Example
Compare \(L,\ D,\) and \(U\) for a symmetric matrix \(A\)
\(\begin{split}A &= \left[\begin{array}{c c c}
a & a & a \\
a & b & b \\
a & b & c \\
\end{array}\right] \\
&\to \left[\begin{array}{c c c}
a & a & a \\
0 & b-a & b-a \\
0 & b-a & c-a \\
\end{array}\right] \\
&\to \left[\begin{array}{c c c}
a & a & a \\
0 & b-a & b-a \\
0 & 0 & c-b \\
\end{array}\right] = U = E_{32}E_{31}E_{21}A \\
L &= (E_{32}E_{31}E_{21})^{-1} \\
&= E_{21}^{-1}E_{31}^{-1}E_{32}^{-1} \\
&= \left[\begin{array}{c c c}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}\right]^{-1} \left[\begin{array}{c c c}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1 \\
\end{array}\right]^{-1} \left[\begin{array}{c c c}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1 \\
\end{array}\right]^{-1} \\
&= \left[\begin{array}{c c c}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}\right] \left[\begin{array}{c c c}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
\end{array}\right] \left[\begin{array}{c c c}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
\end{array}\right] \\
&= \left[\begin{array}{c c c}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{array}\right] \\
A &= \left[\begin{array}{c c c}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{array}\right] \left[\begin{array}{c c c}
a & a & a \\
0 & b-a & b-a \\
0 & 0 & c-b \\
\end{array}\right] = \left[\begin{array}{c c c}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{array}\right] \left[\begin{array}{c c c}
a & 0 & 0 \\
0 & b-a & 0 \\
0 & 0 & c-b \\
\end{array}\right] \left[\begin{array}{c c c}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{array}\right]\end{split}\)