# BN254
## G1 Curve Equation
$$y^2 = x^3 + 3$$
## Base Field q
**Decimal Representation:**
21888242871839275222246405745257275088696311157297823662689037894645226208583
**Binary Representation:**
11000001100100010011100111001011100001001100011010000000101001101110000101000001000101101101101000000110000001010110000101110110010111100000010110101010010001011010000111000111001010100011010011110000100000100011000001011011011000011111001111110101000111
**#Bits:** $254$
## Scalar Field r
**Decimal Representation:**
21888242871839275222246405745257275088548364400416034343698204186575808495617
**Binary Representation:**
11000001100100010011100111001011100001001100011010000000101001101110000101000001000101101101101000000110000001010110000101110100101000001100111110100001001000011110011011100101110000100100010100001111100001111101011001001111110000000000000000000000000001
**#Bits:** $254$
# Baby Jubjub
## Curve Equation
$$ax^2 + y^2 = 1 + d x^2y^2$$
where $a=168700$ and $d=168696$.
## Base Field q
Same as the scalar field of BN254.
## Scalar Field r
**Decimal Representation:** 2736030358979909402780800718157159386076813972158567259200215660948447373041
**Binary Representation:**
11000001100100010011100111001011100001001100011010000000101001101110000101000001000101101101101000000110000001010110000101110101011001111101110110110111000001110010010000011101110000010100110011101110010100101111101110000111001001000010010011011110001
**#Bits:** $251$
## Notes
**Zero Point:** $(0, 1)$
**Negation:** Given point $(x,y)$, the negation is $(-x, y)$.