貢獻者: 美生菜-Murphy
🧔:interviewer
👶:interviewee
🧔:第一題呢我會給你一個整數那你要去判斷這個整數是否為palindrome,也就是迴文,那如果判斷為是的話回傳一個True,反之的話就回傳false,那你先試試看
👶:好的那在這邊判斷的方式,我會先將這個數字轉換成字串,並且利用for迴圈,去比對第一個數字與最後一個數字是否相同,以此類推,來判定這個數字是否為迴文
🧔:You have two integer arrays, nums1 and nums2. Both arrays are sorted in non-decreasing order. You're also given two integers, m and n, which represent the actual number of elements in nums1 and nums2, respectively.
Your task is to merge nums1 and nums2 into a single array that remains sorted in a non-decreasing order. Here's the catch: you need to merge the values directly inside the nums1 array, and you should not return anything.
To make this feasible, the array nums1 has a total length of m + n. It consists of the first m elements that you'll need to merge, followed by n slots, all set to zero, which you can use to accommodate the elements from nums2. On the other hand, nums2 simply contains n elements.
👶:I approach this problem by starting from the end of both arrays.
Initialize three pointers:
ns1 pointing to the last element in nums1 that has an actual value (index m-1).
ns2 pointing to the last element in nums2 (index n-1).
lens pointing to the last position of nums1 (index m+n-1).
Use a loop to iterate as long as both ns1 and ns2 have not reached the beginning of their respective arrays:
If the element at nums1[ns1] is greater than nums2[ns2], place nums1[ns1] at the position indicated by lens and decrement ns1.
Otherwise, place nums2[ns2] at the position indicated by lens and decrement ns2.
In each iteration, decrement lens.
If there are still elements left in nums2 (i.e., ns2 hasn't reached the start), copy them into the remaining positions of nums1.
This solution efficiently merges the two arrays in-place without using any additional space.
🧔:給你一個與數組相關的問題,這也是考驗你在動態規劃上的能力。先讓我描述一下問題背景。
假設你有一個整數數組,你可以在這些數字前放置 '+' 或 '-' 符號,目的是要使這些數字的和達到某個特定目標值。
例如,給定數組 [2,1] 和目標值 1,你可以有以下組合:
+2 -1 = 1
所以答案是1。
現在的問題是,給定一個數組和一個目標值,你能計算出有多少種方法可以達到這個目標值嗎?
👶:好的,這段程式的主要目的是計算有多少種方法可以使得一組數字透過加或減得到特定的目標值。
初始化:我定義了一個偏移量offset,使得在計算時,所有可能的和都會正向偏移,從而避免使用負數索引。
動態規劃:我使用了dp這個二維數組,其中dp[i][j]代表前i個數字可以達到和為j - offset的方法數。初始化時,沒有使用任何數字時,和為0的方法是唯一的。
更新策略:對於nums中的每個數字,我都嘗試了加或減的選擇,並相應地更新dp數組。
結果:最後,我查詢dp[numsSize][target + offset],即得到了使用所有數字,達到目標和的方法數。
這種方法之所以有效,是因為它利用了動態規劃來避免重複的計算,同時能確保所有可能的組合都被考慮到。
英文題目
影片的畫面內容字太小,看不清楚程式碼的部分