Try   HackMD

3208. Alternating Groups II

  1. Extend the Array: To handle the circular nature of the array, extend the colors array by appending the first k-1 elements to its end. This allows us to easily check for alternating groups that wrap around the end of the array.

  2. Initialize Counters:

    • res to store the number of alternating groups.
    • cnt to count the length of the current alternating group.
  3. Iterate Through the Extended Array:

    • For each tile, check if its color is different from the previous tile.
    • If it is, increment the cnt counter.
    • If it isn't, reset the cnt counter to 1.
    • If the cnt counter reaches k, increment the res counter as it indicates the end of an alternating group.
  4. Return the Result: Finally, return the res counter, which represents the number of alternating groups of length k.

Solution
class Solution { public: int numberOfAlternatingGroups(vector<int>& colors, int k) { for (int i = 0; i < k - 1; ++i) { colors.push_back(colors[i]); } int res = 0; // cnt 用來記錄長度是否達到 k int cnt = 1; for (int i = 1; i < colors.size(); ++i) { // 如果是交錯的格子,則 cnt++ if (colors[i] != colors[i - 1]) { ++cnt; } else { // 如果不是交錯的格子,則 reset cnt= 1 cnt = 1; } // 如果 cnt 達到 k,則結果 + 1 if (cnt >= k) ++res; } return res; } };
  • 時間複雜度:
    O(n+k1)
  • 空間複雜度:
    O(n+k)