#20200120
```
Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.
Note:
Given target value is a floating point.
You may assume k is always valid, that is: k ≤ total nodes.
You are guaranteed to have only one unique set of k values in the BST that are closest to the target.
Example:
Input: root = [4,2,5,1,3], target = 3.714286, and k = 2
4
/ \
2 5
/ \
1 3
Output: [4,3]
```
```
public List<Integer> closestKValues(TreeNode root, double target, int k) {
List<Integer> res = new ArrayList<>();
Stack<Integer> s1 = new Stack<>(); // predecessors
Stack<Integer> s2 = new Stack<>(); // successors
inorder(root, target, false, s1);
inorder(root, target, true, s2);
while (k-- > 0) {
if (s1.isEmpty())
res.add(s2.pop());
else if (s2.isEmpty())
res.add(s1.pop());
else if (Math.abs(s1.peek() - target) < Math.abs(s2.peek() - target))
res.add(s1.pop());
else
res.add(s2.pop());
}
return res;
}
// inorder traversal
void inorder(TreeNode root, double target, boolean reverse, Stack<Integer> stack) {
if (root == null) return;
inorder(reverse ? root.right : root.left, target, reverse, stack);
// early terminate, no need to traverse the whole tree
if ((reverse && root.val <= target) || (!reverse && root.val > target)) return;
// track the value of current node
stack.push(root.val); // 1, 2, 3 // 5 4
inorder(reverse ? root.left : root.right, target, reverse, stack);
}
```
Design a max stack that supports push, pop, top, peekMax and popMax.
push(x) -- Push element x onto stack.
pop() -- Remove the element on top of the stack and return it.
top() -- Get the element on the top.
peekMax() -- Retrieve the maximum element in the stack.
popMax() -- Retrieve the maximum element in the stack, and remove it. If you find more than one maximum elements, only remove the top-most one
maxStack = [5, 8, 7, 3, 2]
push(5);
push(8);
push(7);
push(3);
push(2);
peekMax() -> 8;
popMax() -> 8;
maxStack = [5, 7, 3, 2]
---------------------------
stack = [5, 8, 7, 3, 2]
maxStack = [5, 8, 8, 8, 8]
```
class MaxStack {
Stack<Integer> stack;
Stack<Integer> maxStack;
/** initialize your data structure here. */
public MaxStack() {
stack = new Stack<>();
maxStack = new Stack<>();
}
public void push(int x) {
int max = maxStack.isEmpty() ? x : maxStack.peek();
maxStack.push(max > x ? max : x);
stack.push(x);
}
public int pop() {
maxStack.pop();
return stack.pop();
}
public int top() {
return stack.peek();
}
public int peekMax() {
return maxStack.peek();
}
public int popMax() {
int max = peekMax();
Stack<Integer> bufferStack = new Stack<>();
while (top() != max) {
bufferStack.push(pop());
}
pop();
while (!bufferStack.isEmpty()) {
push(bufferStack.pop());
}
return max;
}
}
```