Relating neural activity to behavior requires an understanding of how neural computations arise from the coordinated dynamics of distributed, recurrently connected neural populations. However, inferring the nature of recurrent dynamics from partial recordings of a neural circuit presents considerable challenges. Here we show that some of these challenges can be overcome by a fine-grained analysis of the dynamics of neural residuals—that is, trial-by-trial variability around the mean neural population trajectory for a given task condition. Residual dynamics in macaque prefrontal cortex (PFC) in a saccade-based perceptual decision-making task reveals recurrent dynamics that is time dependent, but consistently stable, and suggests that pronounced rotational structure in PFC trajectories during saccades is driven by inputs from upstream areas. The properties of residual dynamics restrict the possible contributions of PFC to decision-making and saccade generation and suggest a path toward fully characterizing distributed neural computations with large-scale neural recordings and targeted causal perturbations.
這篇論文想要解決的問題是如何從局部神經電路的部分記錄中推斷循環動力學的本質,並通過對神經殘差動力學的細粒度分析來限制前額葉皮質在決策和眼球運動生成中的可能貢獻。
這篇論文使用了神經殘差動力學的細粒度分析方法,即對於特定任務條件下神經群體平均軌跡周圍的試驗之間變異性進行分析,來克服從神經電路的部分記錄中推斷循環動力學本質所面臨的挑戰。此外,他們還使用了大規模神經記錄和有針對性的因果干擾,以限制前額葉皮質對決策和眼球運動生成的可能貢獻。
這篇論文的最終成果是通過神經殘差動力學的細粒度分析,揭示了前額葉皮質在眼球運動和決策生成中的循環動力學特性。他們的研究表明,神經殘差動力學的性質限制了前額葉皮質對決策和眼球運動生成的可能貢獻,並為使用大規模神經記錄和有針對性的因果干擾來完全表徵分佈式神經計算提供了一條路徑。
神經殘差動力學、循環動力學、前額葉皮質、決策、眼球運動。