NDARMA(1,1) formulation

As a choice model

An observed time series

Xt with marginal distribution
XtΠ
, in which
Π
can be anything, say,
Categorical(λ)
or
Poisson(λ)
, NDARMA(1,1) is

Xt={Xt1with probability α1Utwith probability β0Ut1with probability β1,

in which

Ut is a latent process with
UtΠ
and
α1+β0+β1=1
.

With ARMA(1,1)-type formulation

For a latent innovation process

Ut with
UtΠ
, an observed time series
Xt
with marginal distribution
XtΠ
is an NDARMA(1,1) process/dice with and is given by,

Xt=a1,tXt1+b0,tUt+b1,tUt1

in which

Ut is a latent innovation process/dice
Ut
with
UtΠ
and
Dt=[a1,t,b0,t,b1,t]
a latent decision variable (dice)
DtMultinomial(1;ab)
with decision probabilities
ab=[α1,β0,β1]

The Log-likelihood of this process (if I'm not mistaken) may be written as

logL=logPr(Xt=x|λ,α1,β0,β1;Xt1,)=t=1N[α1Pr(Xt1=x|)+β0Pr(Ut=x|)+β1Pr(Ut1=x|)]

Some Stan attempts

data {
  int<lower=1> N; // Number of observations
  int<lower=1> k; // Number of categories in X and U
  int<lower=1, upper=k> X_t[N]; // Observed data X_t
}

parameters {
  simplex[k] lambda; // Parameters of the multinomial distribution Pi
  simplex[3] ab; // Probabilities for dice (alpha1, beta0, beta1)
}

model {

  int U_t[N];
  array[3,N] int D_t; 

  // Priors
  lambda ~ dirichlet(rep_vector(2.0, k));
  ab ~ dirichlet(rep_vector(2.0, 3));

  for (t in 2:N) {
    vector[3] contributions;
    // array[3] real D_t;
    // D_t ~ multinomial(ab);

    contributions[1] = D_t[1, t] + X_t[t-1];
    contributions[2] = D_t[2, t] + U_t[t-1];
    contributions[3] = D_t[3, t] + U_t[t];

    target += log_sum_exp(contributions);
  }
}

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →
NO

The conditional probability of the mixture should be

Pr(Xt=x|λ,α1,β0,β1;Xt1,)=α1Pr(Xt1=x|)+β0Pr(Ut=x|)+β1Pr(Ut1=x|)

So the log-likelihood would be

logL=logPr(Xt=x|λ,α1,β0,β1;Xt1,)=t=1N[α1Pr(Xt1=x|)+β0Pr(Ut=x|)λx+β1Pr(Ut1=x|)λx=t=1N[α1Pr(Xt1=x|)+λx(β0+β1)]=t=1N[α1Pr(Xt1=x|)+λx(1α1)]

P(Xt,Xt1;ϵt,ϵt1)=P(Xt,ϵt|Xt1,ϵt1)P(Xt1,ϵt1)

[ P(X_t = i_0, X_{t-1} = i_1, U_t = j_0, U_{t-1} = j_1) ]

[ = p_{j_0} \cdot \left( (\alpha_0 \delta_{i_0 j_0} + \alpha_1 \delta_{i_0 j_1} + \alpha_1 \delta_{i_0 i_1}) \cdot P(X_{t-1} = i_1, U_{t-1} = j_1) \right. ]

[

  • \beta_2 \cdot P(X_{t-1} = i_1, U_{t-1} = j_1, X_{t-2} = i_0, U_{t-1} = i_0)
  • \beta_2 \cdot P(X_{t-1} = i_1, X_{t-2} = i_0, U_{t-1} = j_1) \Bigg) ]

pj0((β0δi0j0+β1δi0j1+α1δi0i1)pj1((1β0)pi1+β0δi1j1))

pj0pj1(β0δi0j0+β1δi0j1+α1δi0i1)((1β0)pi1+β0δi1j1)