# Submarine + MLflow 1. Build your dockerfile with your python script. Here is an [example](https://github.com/pingsutw/hello-submarine/tree/master/mlflow-example) 2. Lauch a training job from submarine workbench ![](https://i.imgur.com/Wa8pFso.png) ![](https://i.imgur.com/do3Y0Ij.png) ![](https://i.imgur.com/arYE07z.png) 3.(optional) Lauch a job from command line ```bash= curl -X POST -H "Content-Type: application/json" -d ' { "meta": { "name": "mlflow-example", "namespace": "default", "framework": "TensorFlow", "cmd": "python3 /var/example/train.py", "envVars": { "MLFLOW_TRACKING_URI": "http://submarine-mlflow-service:5000" } }, "environment": { "image": "pingsutw/mlflow-example:latest" }, "spec": { "Worker": { "replicas": 1, "resources": "cpu=4,memory=4096M" } } } ' http://127.0.0.1:80/api/v1/experiment ``` 4. Metrics in mlflow UI ![](https://i.imgur.com/cpZEmpO.png) ![](https://i.imgur.com/CAdWEvV.png)