Try   HackMD

DAY 1 EXERCISES

Exercise 2: MLPs

Dataset Network architecture Test accuracy Submitter
MNIST Default MLP 95.61% Markus
MNIST Default MLP with 40 units 96.92% Markus
Fashion MNIST Default MLP 85.64% Markus
MNIST My awesome model 0.01% Mats
MNIST My custom model 98.20% Prince
MNIST Experimental MLP with 2 hidden layers of 200,50 units each and drop out rate=0.1. 98.01% Sreeram
MNIST 3 hidden layers,300,200,100 units and sigmoid function for the last layer,RMSprop as optimizer. 98.15% Neha
MNIST two_layer_mlp_model 97.13% Margherita
MNIST my_two_layer_model 97,19% Marija
MNIST 2 hidden layers;1st - 100 units 0.2 dropout rate ; 2nd 100 units 0.4 dropout rate 97.71% Narcis
MNIST 64 batch size, 20 iterations 97.4% James
MNIST 3 hidden layers(400,100,50), 0.2 dropout 97.80% Prakshal
MNIST 2 hidden layers(50,50), 0.2 dropout, batch size -32 97.25% Trang
MNIST 2 hidden layers(50,40), one dropout 0.2, batch size -32 97.17% Tomas
MNIST 2 hidden layers(50,40), nodropout, batch size -32 97.42% Purbaj

If interested, there is a Pytorch version of the notebook at optional/pytorch-mnist-mlp.ipynb

My 40-unit MLP:

x = layers.Flatten()(inputs)
x = layers.Dense(units=40, activation="relu")(x)
outputs = layers.Dense(units=10, activation='softmax')(x)

Exercise 3: CNNs

Dataset Network architecture Test accuracy Submitter
MNIST Default CNN 98.49% Markus
MNIST Default CNN, 20 epochs 98.64% Markus
MNIST My modeltest 98.84% JoseManuel
MNIST Adamax optimizer 99.24% JoseManuel
MNIST my_SGD_model 98.82% Marija
MNIST CNN with 2 conv 2d with 32,32 units & dense layer units=128, drop rate=0.5. Optimizer=adam 99.02% Neha
MNIST CNN with 2 conv 2d with 32,32 units & dense layer units=64, drop rate=0.1, epochs=10. Optimizer=Adamax 99.19% Sreeram
MNIST adam, epoch=5,batch size=128 98.95% Prince
MNIST adamax, epoch=5,batch size=128 99.19% Prince
MNIST adadelta,epoch=5,batch size=128 99.19% Prince
MNIST nadam, epoch=5,batch size=128 99.17% Prince
MNIST rmsprop,epoch=5,batch size=128 99.03% Prince
MNIST ftrl,epoch=5,batch size=128 11.35% Prince
MNIST adagrad,epoch=5,batch size=12 11.35% Prince
MNIST My_Model 10 epocs 99.12% Purbaj
MNIST CNN with 2 conv 2d with 32,21 units & dense layer units = 128, drop rate = 0.5, optimizer=Adam 98.57% Trang
MNIST Default CNN 99.1% James
MNIST Adadelta 99.02% Javed
MNIST RMSprop 99.19% Prakshal
MNIST my_cnn_model 98.37% Margherita
MNIST Adamax Opt and Batch size=64 99.26% JoseManuel
MNIST Default CNN, 10 epochs 99.14% Bruno
MNIST Default CNN, 5 epochs Adam Op 99.24% Ramkumar

If you feel that Notebooks is too slow for your CNN experiments, you can also try Colab. With CNNs, a GPU makes a big difference: https://colab.research.google.com/github/csc-training/intro-to-dl/blob/master/day1/03-tf2-mnist-cnn.ipynb

Summary of different models and their accuracies on the MNIST dataset: https://paperswithcode.com/sota/image-classification-on-mnist


Exercise 4: RNNs

Dataset Network architecture Test accuracy Submitter
IMDB Default 1-layer LSTM 82.96% Mats
IMDB Default 1-layer CNN (optional folder) 88.94% Mats
IMDB Two layers 82.13% Jose Manuel
IMDB 2Layer 83.09% Purbaj
IMDB LSTM 2 layers with 32 units each, epoc=5, activation=relu, dropout=0.1 83.40% Sreeram
IMDB LSTM 2 layers with 32 units each, epoc=5, activation=sigmoid, dropout =0.2 83.68% Neha Ram
IMDB LSTM x 2 ADAMAX 84.53%
IMDB LSTM x 2 ADAMAX 84.40% Ramkumar
IMDB custom_model 82.15 Marija
IMDB LSTM 2 layers with 32 units each, epoc=5, activation=relu, dropout=0.1 x 2 83.58 Trang