Try   HackMD

從研究推測大型語言模型將如何引領人機互動新革命 - YC (陳宜昌)

歡迎來到 MOPCON 2024 共筆

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →

共筆入口:https://hackmd.io/@mopcon/2024
手機版請點選上方 按鈕展開議程列表。

重點摘要

前情提要

GAI 皆圍繞在 LLM 上,從研究員角度看人機互動。

Media 本身的形式比其傳遞內容對人類的影響更為重要

麥克魯漢(現代傳播理論的奠基者)

Image Not Showing Possible Reasons
  • The image was uploaded to a note which you don't have access to
  • The note which the image was originally uploaded to has been deleted
Learn More →

  • 1965: PDP-8 - 真正意義上的小型電腦
  • 1984: Macintosh - 具有 GUI 的電腦
  • 1997: Google - 透過搜尋欄與世界互動
  • 2007: iPhone 初代 - 觸控式輸入

User ←→ Agent ←→ Information

  • AI Agent 四種研究方向
    • Natural Language Control
    • Multi-modal Awareness
    • Tool Using
    • Reasoning

Image Not Showing Possible Reasons
  • The image was uploaded to a note which you don't have access to
  • The note which the image was originally uploaded to has been deleted
Learn More →

語言模型訓練階段

  • Pre-training
    • next token prediction
    • large-scale data
    • to compress all data, the LLMs are forced to learn:
      • basic knowledge
  • Supervised Fine-tuning (SFT)
    • Learn a template
    • 缺點:聊天 response 的不符合人類習慣,透過
  • Preference Learning 來彌補
    • RLHF(Reinforcement Learning from Human Feedback)
    • 後可用評分器來取代人與 LLM 互動。
    • 每一筆訓練資料包含:問題、好的回答、壞的回答。
  • DPO
    • DPO vs RLHF: offline vs online
    • 每一筆訓練資料包含:問題、好的回答、壞的回答。

多模態

  • 可以同時處理不同功能的 model,例如:同時辨識圖片與文字
  • 如何把多模態放入大型語言模型內?
    • 把圖片當成一種語言(LlaVa)。
    • Cross-attention(Llama3)。
  • Any-to-any Multi-modal LLMs
    • NExt-GPT

AI 用工具

  • Function Calling → Chat Completion
  • Breeze-FC
    Image Not Showing Possible Reasons
    • The image was uploaded to a note which you don't have access to
    • The note which the image was originally uploaded to has been deleted
    Learn More →
    • 訓練 tool using 的 LLM Prompt template

推論

  • 思想快與慢:快思(system 1)與慢想(system 2)。
  • CoT, Chain of Thought
    • 目前 GPT o1 思考鏈使用的方法
    • 利用拆分步驟請 LLM 解決可大幅強化輸出效果
  • Multi-CoTs (CoT-SC)
  • Tree of Thoughts (ToT)
  • Graph of Thoughts (GoT)
  • Agent Framework: ReAct (Reason + Act)
  • 滿足 Agent 的條件
    • Perception
    • Decision Making
    • Action