or
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up
Syntax | Example | Reference | |
---|---|---|---|
# Header | Header | 基本排版 | |
- Unordered List |
|
||
1. Ordered List |
|
||
- [ ] Todo List |
|
||
> Blockquote | Blockquote |
||
**Bold font** | Bold font | ||
*Italics font* | Italics font | ||
~~Strikethrough~~ | |||
19^th^ | 19th | ||
H~2~O | H2O | ||
++Inserted text++ | Inserted text | ||
==Marked text== | Marked text | ||
[link text](https:// "title") | Link | ||
 | Image | ||
`Code` | Code |
在筆記中貼入程式碼 | |
```javascript var i = 0; ``` |
|
||
:smile: | ![]() |
Emoji list | |
{%youtube youtube_id %} | Externals | ||
$L^aT_eX$ | LaTeX | ||
:::info This is a alert area. ::: |
This is a alert area. |
On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?
Please give us some advice and help us improve HackMD.
Do you want to remove this version name and description?
Syncing
xxxxxxxxxx
機器學習於量化交易的挑戰與解法 - 韓承佑
歡迎來到 MOPCON 2019 共筆
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →共筆入口:https://hackmd.io/@mopcon/2019
手機版請點選上方 按鈕展開議程列表。
會場 wifi-SSID: mopcon-2019
會場 wifi-PASSWD: mopcon-2019
講者簡報
議程影片
[TOC]
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →時間帶來的好處:
一個人能不能好死取決於有沒有把資產的 70% 花在投資上。
Finlab
https://www.finlab.tw/mopcon.html
講者投影片: https://www.finlab.tw/slide_mopcon.pdf
Machine Learning
Supervised Machine Learning 兩步驟
不給答案(label),能做預測嗎?
Financial Data(features)
Fundamental data
Focusing in creating a portrait of a company
Trading Data
如何查看公司價值:
機器學習可透過股價來判斷後續發展獲利
Creating Technical indicators
原始資料是"股價" Price historical data
利用原始資料計算出各種指標作為特徵,如:
指標有什麼用?做預測股票上漲或下跌
使用講者提供的程式碼:
Labeling
Challenging of Labeling the data
fixed time horizon
標記方式:一段時間內(w):
問題: 必須持有一段時間(w),才能賣出股票(風險承擔性較大)
Label Generation Methods
Demo
問題:講者提供的label對於股票預測有何影響?
講者:買賣股票的方式有很多種,可以產生很多種策略
所以根據不同的 label ,就可以用同樣的模型 創造出各種不同的策略喔!
假如您有很多種不同的labeling方式,都可以產生獲利模型,分散風險,會是不錯的選擇!
Neural Network (神經網路)
Deep Neural Network (深度神經網路)
Long Short Term Memory Neural Network ( LSTM )
Convolutional Neural Network(CNN)
視覺網路 vs 交易
Time series to Image conversion Approach
Backtest (回測)
序列資料切 Validation 遇到的問題
由於是序列化資料,訓練資料很容易包含測試資料。
y
x2
y
x1
x2
tags:
MOPCON 2019