LLM建構AI Agent的實踐 - Ian
歡迎來到 MOPCON 2024 共筆
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
共筆入口:https://hackmd.io/@mopcon/2024
手機版請點選上方 按鈕展開議程列表。
從這開始
本次範例源始碼 : https://github.com/iangithub/devllmapp/tree/main/OtherSample/Mopcon2024/AgentSample
本次使用的 Semantic Kernel 框架鐵人賽參考資源 : https://ithelp.ithome.com.tw/users/20126569/ironman/7890
本次範例之一的 RAG POC Agent
Image Not Showing
Possible Reasons
- The image was uploaded to a note which you don't have access to
- The note which the image was originally uploaded to has been deleted
Learn More →
QR Code(好心人可以換更清楚的圖 😅)
Image Not Showing
Possible Reasons
- The image was uploaded to a note which you don't have access to
- The note which the image was originally uploaded to has been deleted
Learn More →
Image Not Showing
Possible Reasons
- The image was uploaded to a note which you don't have access to
- The note which the image was originally uploaded to has been deleted
Learn More →
重點摘要
前情說明
- 大家應該都知道的 LLM 模型的限制
- 對應產生功能
- GPTPlugins
- MyGPT。
- Actions(基於 OpenAI,可連接外部系統)
- 這些功能目的:擴展 LLM 能力
- 讓 AI 幫你做更多事。
- 傳統應用 - 規則
- LLM 應用 - 自主調用(給任務讓 LLM 自行完成目標)
- Steps involved when LLMs use external
- 工作檢索合選擇
- 選擇工具
- 實際調用工具
- 將工具產生結果,加入至上下文中
- 根據可用工具 Plugins 做出決策,並自動化動作。
- Plugins
- 外觀:用自然語言描述
- 內在:提示工程(prompt)、code
- How to do
- 計畫與推理
- AI Agent 理解使用者與易拆解任務計劃並執行這些任務
- 完成多步驟任務
- Plugins 使用
Agent Kernel
AI Agent Framework Semantic Kernel
- 輕量開源 SDK。
- 目前因工具迭代速度太快,講者建議可以直接閱讀 Source Code,會比看 document 學快。
- 可以連接雲端或本機端模型。
AI Agent Designs
- Base Principle
- Single Agent
- Agent: 1
- Plugin: n
- 範例:詢問時間
- Multi-Agent: Sequence
- Agent: n
- 依序完成一個 Workflow,並讓個別不同專業的 Agent 處理自己擅長的事情
- 各自 Agent 可以有自己的 LLM+Plugins
- 範例:訂閱國內外文章 RSS(newsAgent) → 翻譯(translateAgent)
- Multi-Agent: Reflection
- Agent: n
- Plugin: n
- 具有反思機制
- 在 Prompt 中重要的事情講三次真的有效!!XD
- 範例:讓兩個 Agent 撰寫與 review 文案。
- Multi-Agent: Delegate
- Agent: n
- Plugin: n
- 為每一個專用的 Agent 配置個性化設定
- 如何確認每個任務都對應到正確的 Agent?印出來
- 範例:根據需求,讓不同 Agents 去查詢負責的法規(搭配使用 RAG)。
Conclusion
- AI Agent 是現在進行式
- Micro-Service → Micro-AI-Service
30 天鐵人賽