# How to create low volatility assets ## Step 1: Synthetic commodity asset - Non-discretionary monetary policy - Denationalized - Only monetary usage - Examples: BTC, (gold) - See: _Synthetic Commodity Money_ by George Selgin - Has: - Price volatility $A_{price}$ ## Step 2: Rebase function - Inputs: price, benchmark (cpi) - Move price volatility to supply volatility - Via expand/contract supply - Creates [Hayek money](https://garden.merkleplant.xyz/post/ampleforth-is-hayek-money/) - Isomorphic, no volatility added/removed $A_{price} => A_{supply}$ ## Step 3: Tranching function - Input: $A_{supply}$, ratio, runtime - Example input: AMPL, 70/30, 2 weeks - Segment volatility over fixed periods of time $A_{supply} => \{T_{sr}, T_{jr}\}$ Over fixed period have: - $T_{sr}$ low volatility asset - $T_{jr}$ high volatility asset - Everything stays isomorph - No volatility change inside whole system ## Step 4: Rotation - Input: Continuous stream of fresh $T_{sr}$ - Different incentive mechanisms drive competition: - Friedman’s K% rule - Auctioning (probably cheaper, but less predictable) - See _Concurrent Private Currencies_ by Hayek $\{T_{sr1}, T_{sr2}, T_{sr3}\} => \text{longterm low volatility asset}$ ## Summary ``` wampl -rebase-> ampl -buttonwood bonds-> {sr, jr} -> spot protocol -rotation-> {sr_1, sr_2, sr_3, ampl} = spot ~= 1 ampl ~= 1 2019 cpi $ = 1.17$ ``` **At any point system’s equilibrium can be transparently derived !**