Try   HackMD

Avalanche Economic Model Specification

Overview

The Avalanche network is a complex economic system with multiple interacting subsystems: Staking Dynamics, Token Supply, Fee Dynamics, L1 Ecosystem, and Governance. This specification defines the mathematical framework for modeling these interactions using a differential specification approach.

State

Name Symbol Definition Initial Value
Total Supply
S
Total AVAX tokens in existence 457,300,000
Circulating Supply
Sc
SSsSl
218,100,000
Staked Supply
Ss
Sv+Sd
239,200,000
Validator Stake
Sv
Total stake by validators 202,800,000
Delegator Stake
Sd
Total stake by delegators 36,300,000
Locked Supply
Sl
Tokens locked in vesting 36,669,600
Cumulative Burned
B
Total fees burned 2,730,000
Active Validators
V
Number of active validators 1,956
Primary Validators
Vp
Validators on Primary Network 1,491
L1 Validators
Vl1
Validators on L1s 465
Active L1s
L
Number of active L1s 66
Modern L1s
Lm
L1s using ACP-77 27
Legacy L1s
Ll
L1s using old model 39
Gas Price
Pg
Current gas price (nAVAX) 25
Excess Gas
Xg
Excess gas consumption 0
Daily Issuance
Id
Daily token issuance 25,885
Daily Burning
Bd
Daily token burning 750
Staking APR
rs
Average staking return 0.0613
Avg Stake Duration
Ds
Average staking period (days) 180
Delegation Utilization
Ud
Delegation capacity used 0.356
L1 Continuous Fees
Fl1
Daily L1 fees (AVAX) 20.57

Parameters

Name Symbol Definition Initial Value
Max Supply Cap
Smax
Maximum AVAX supply 720,000,000
Min Validator Stake
sv,min
Minimum validator stake 2,000
Max Validator Stake
sv,max
Maximum validator stake 3,000,000
Min Delegator Stake
sd,min
Minimum delegator stake 25
Min Stake Duration
Dmin
Minimum staking period 14 days
Max Stake Duration
Dmax
Maximum staking period 365 days
Max Delegation Weight
wmax
Max delegation per validator
Min Consumption Rate
cmin
Minimum reward rate 0.10
Max Consumption Rate
cmax
Maximum reward rate 0.12
Minting Period
Tm
Annual minting period 365 days
Block Time
τ
Time between blocks 2 seconds
Min Gas Price
Pg,min
Minimum gas price 1 nAVAX
Gas Update Constant
Kg
Gas price update constant 97,000
Target Gas/Second
Gtarget
Target gas consumption 15,000,000
L1 Base Fee Rate
Fbase
Base L1 fee rate 512 nAVAX/s
L1 Target Capacity
Cl1
Target L1 validators 10,000
L1 Max Capacity
Cl1,max
Maximum L1 validators 20,000
Validator Restaking Rate
ρv
Validator reward restaking 0.70
Delegator Restaking Rate
ρd
Delegator reward restaking 0.50
Uptime Requirement
umin
Minimum validator uptime 0.80
Delegation Fee
fd
Average delegation fee 0.071

Mechanisms

Staking Subsystem

Stake

A token holder

i can stake tokens by locking
sismin
for duration
Di[Dmin,Dmax]
:

For validators:

Sv+=Sv+si where sisv,min
V+=V+1

For delegators choosing validator

j:
Sd+=Sd+si where sisd,min

subject to: kDjskwmaxsj

where

Dj is the set of delegators to validator
j
.

The circulating supply decreases:

Sc+=Scsi

Claim Rewards

At the end of staking period, staker

i receives rewards:

ri=(SmaxS)siSDiTmECR(Di)

where the Effective Consumption Rate is:

ECR(Di)=cmin+(cmaxcmin)DiDmax

For delegators, the net reward after commission:

rd,i=ri(1fd,j)

where

fd,j is the commission rate of validator
j
.

Unstake

When stake period ends, tokens return to circulation:

Ss+=Sssi
Sc+=Sc+si+ri

If restaking:

Ss+=Sssi+ρri
Sc+=Sc+si+(1ρ)ri

where

ρ{ρv,ρd} depending on staker type.

Token Supply Subsystem

Issuance (Synthetic State Change)

Per epoch (day), new tokens are minted according to staking participation:

Id=(SmaxS)SsS1TmECR

where

ECR is the stake-weighted average ECR:
ECR=iSsiECR(Di)iSsi

The total supply increases:

S+=S+Id

This is allocated proportionally to all stakers but not realized until claim.

Burning

All transaction fees are burned permanently:

B+=B+Bd
S+=SBd

Sc+=ScBd

where daily burning is:

Bd=tTfee(t)

Fee Dynamics Subsystem

Gas Price Update

The gas price adjusts based on network congestion:

Pg+=Pg,mineXg/Kg

where excess gas consumption evolves as:

Xg+=max(0,Xg+GactualGtarget)

Transaction Fee

For a transaction

t consuming resources:
fee(t)=Pg(bt+1000rt+1000wt+4ct)

where:

  • bt
    : bandwidth (bytes)
  • rt
    : read operations
  • wt
    : write operations
  • ct
    : compute (microseconds)

L1 Ecosystem Subsystem

Create L1

An operator can create a new L1 by recruiting validators:

L+=L+1
Vl1+=Vl1+nl1

where

nl1 is the number of validators for the new L1.

L1 Continuous Fees

Each L1 validator pays continuous fees:

Fl1,i=Fbasee(Vl1Cl1)/Kl1

Total daily L1 fees burned:

Fl1=iLniFl1,i86400

where

ni is the validator count for L1
i
.

Abandon L1

If an L1 cannot pay fees:

L+=L1
Vl1+=Vl1nl1

Validators return to available pool or leave system.

Governance Subsystem

Parameter Update

Governance can update parameters within bounds:

For parameter

θ with proposed change
Δθ
:

If time since last change

tlast>tmin:
θ+=θ+min(Δθ,h(θ)θ)

where

h(θ) is the hysteresis function limiting change magnitude:
h(θ)={0.20if tlast>180 days0.10if tlast>90 days0.05if tlast>30 days0otherwise

System Dynamics

The continuous-time evolution of the system follows:

Supply Dynamics

dSdt=Ψi(Ss,S,Ds)Ψb(F)

where:

  • Ψi
    : Issuance rate function
  • Ψb
    : Burning rate function

Staking Dynamics

dSsdt=ϕs(Sc,rs)ψu(Ss,Ds)+ηr(Id,ρ)

where:

  • ϕs
    : Staking inflow rate
  • ψu
    : Unstaking outflow rate
  • ηr
    : Restaking rate

Fee Market Dynamics

dPgdt=μPg[exp(XgKg)1]

dXgdt=G(t)δXg

where:

  • G(t)
    : Gas consumption rate
  • δ
    : Decay parameter
  • μ
    : Adjustment speed

L1 Ecosystem Dynamics

dLdt=λcreate(Pg,Fl1)λabandon(L,Fl1)

dVl1dt=navgdLdt+θconvert(Vp,Vl1)

where:

  • λcreate
    : L1 creation rate
  • λabandon
    : L1 abandonment rate
  • θconvert
    : Validator conversion rate

Equilibrium Analysis

The system reaches equilibrium when all derivatives equal zero:

Staking Equilibrium

At equilibrium, staking inflows equal outflows plus restaking:

ϕs(Sc,rs)=ψu(Ss,Ds)ηr(Id,ρ)

Empirically observed:

Ss/S0.523

Supply Equilibrium

Issuance equals burning at equilibrium:

Ψi(Ss,S,Ds)=Ψb(F)

Fee Market Equilibrium

Gas price stabilizes when:

Xg=Kgln(PgPg,min)

Stability Conditions

The system is locally stable if the Jacobian eigenvalues have negative real parts:

J=[S˙SS˙SsSs˙SSs˙Ss]

Key stability requirements:

  1. ΨiS<0
    (issuance decreases with supply)
  2. ϕsrs>0
    (staking increases with APR)
  3. ΨbPg>0
    (burning increases with gas price)

Implementation Notes

  1. Time Steps: Use daily epochs for staking calculations, block-level for fees
  2. Numerical Method: 4th-order Runge-Kutta for differential equations
  3. Conservation: Ensure
    S=Sc+Ss+Sl
    at all times
  4. Bounds: Enforce all parameter constraints and non-negativity

References

  • Avalanche Consensus Whitepaper
  • Avalanche Platform Specification
  • ACP-77: Reinventing Subnets
  • ACP-103: Dynamic Fees
  • cadCAD Documentation