# PFEE GE Healthcare: Deep Learning Inpainting
# How to get a volume ?
* Turn around the patient
* X ray acquisition in different angles
# Artifacts
Different types of artefact:
* Motion artifact
* Metal artifact
* Ring artifacts (detector)
# State of the art
* Where
* Correction applied on volumes
# Inpainting
* Fill selected image area
* Requires having the mask of the missing parts
# Methods
## Interpolation 2D
Interpolation algorithm from skimage to create a basline:
* Nearest neighbor
* Linear
## U-NET 2D
![](https://i.imgur.com/TBfxv5y.png)
# Improvements ?
* Conv2D/3D do not consider the mask
* Losses (MSE/MAE) do not consider the mask
# Partial convolution
* Presented by Nvidia in 2018
* Mask area is much less visible and overall results are improves
## Keras ?
![](https://i.imgur.com/ounf4JU.png)
![](https://i.imgur.com/668yjMK.png)
# Loss improvement
* Using a train VGG
* deep learning classifier
* Layers used: 3rd, 6th and 10th
# Data
![](https://i.imgur.com/4e1iHYJ.png)
# Experiments
## Goal
* 2D
* Perfomance machine learning
* Added value
* 3D
* Adding temporal gives best results
* Can we be more memory efficient using patches ?
# Evaluation method
* Quantitative evaluation
* MSE
* MAE
* SSIM
* Structural similarity
* PSNR
* Peak To Signal Noise Ratio
* More quantitative than qualitative
* Quality eval
* Eval by human eye
# Results
![](https://i.imgur.com/Ajf6f9u.png)
## Qualitative 2D
![](https://i.imgur.com/mvqmHVf.png)
![](https://i.imgur.com/JxxAUOR.png)
### Ribs reconstruction
![](https://i.imgur.com/5fbsShk.png)
## Qualitative 2D+T
![](https://i.imgur.com/N21dNdF.png)
## Analysis
* Machine learning can be used for this task
* PConv and VGG loss are the best improvements
# Conclusion
* Implementation of PConv2D and PConv3D
* Promising resultls
* Kickstarted GE exploration and gave them insights on their future work
* Had fun with advance machine learning
# Questions
## Guillaume Tochon
Le papier a ete utilise sur des images de scan ?
> Non sur des images naturelles
Expliquer 'smoothing loss'
> Dilatation verticale et horizontale des resultats
## Elodie Puybareau
Generation des artefacts: probleme avec modele 2D+T, pourquoi blanc alors que modele 2D noir ?
> Les modeles 2D sont aussi blanc sur les images
## Eleves
Exemple d'applications concretes ?
> Application de corrections permet d'avoir des images pouvant etre travaillees pour un medecin
![](https://i.imgur.com/zaTwI6a.png)
Genration des artefacts aleatoires ?
> Oui pour la position et rotation en 3D mais sinon non, pas de perte de temps a generer de la donnee
Tester avec des formes differentes ?
> Oui avec des coins et des aiguilles
Generer un nombre infini de donnees, probleme de fit ?
> Oui
Interpolation lineaire plus simple ?
> Oui mais beaucoup de stries et n'arrive pas a reconstruire certaines parties
# Retour GE Healthcare
Bonne organisation, bon avancement des projets mais baisse d'activite lors d'examens, groupe autonome