# ASE3: Covariance # Rappels :::danger $$ \rho(X,Y) = \frac{Cov(X,Y)}{\sigma_x\sigma_y} $$ avec: - $\sigma_X=\sqrt{V(X)}$ - $\sigma_Y=\sqrt{V(Y)}$ ::: $$ Cov(X,Y)=\underbrace{<X-E(X),Y-E(Y)>}_{\text{produit scalaire}}\\ \sigma_X=\sqrt{V(X)}=\Vert X-E(X)\Vert\\ \rho(X,Y)=\frac{<X-E(X), Y-E(Y)>}{\Vert X-E(X)\Vert\Vert Y-E(Y)\Vert} $$ ![](https://i.imgur.com/QbssgtG.png) $$ \cos(\theta)=\frac{<u,v>}{\Vert u\Vert\Vert v\Vert} $$ :::danger $$ \rho(X,Y) = \cos(\theta)\\ \vert\rho\vert\le 1 $$ ::: :::info **Proposition** :::danger $$ V(X+Y)=V(X)+V(Y)+2Cov(X,Y) $$ ::: ::: ## Demonstration $$ \begin{aligned} V(X+Y)&=E((X+Y)^2) - (\underbrace{E(X+Y)}_{E(X) + E(Y)})^2\\ &=E(X^2+2XY+Y^2)-E^2(X)-2E(X)E(Y)-E^2(Y)\\ &= E(X^2)+2E(XY) + E(Y^2)-E^2(X)-2E(X)E(Y)-E^2(Y)\\ &=V(X) +V(Y)+2(E(XY)-E(X)E(Y))\\ &=\color{red}{V(X)+V(Y)+2Cov(X,Y)} \end{aligned} $$ **Remarque**: Si $X$ et $Y$ sont independantes $\Rightarrow$ $Cov(X,Y)=0\Rightarrow\color{red}{V(X+Y) = V(X)+V(Y)}$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up